A QUBO Formulation for Minimum Loss Spanning Tree Reconfiguration
Problems in Electric Power Networks
- URL: http://arxiv.org/abs/2109.09659v2
- Date: Tue, 15 Mar 2022 18:59:37 GMT
- Title: A QUBO Formulation for Minimum Loss Spanning Tree Reconfiguration
Problems in Electric Power Networks
- Authors: Filipe F. C. Silva, Pedro M. S. Carvalho, Luis A. F. M. Ferreira,
Yasser Omar
- Abstract summary: We introduce a novel quadratic unconstrained binary optimization (QUBO) formulation for the optimal reconfiguration of distribution grids.
A 33-node test network is used as an illustrative example of our general formulation.
The optimal solution for this example was obtained and validated through comparison with the optimal solution from an independent method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel quadratic unconstrained binary optimization (QUBO)
formulation for a classical problem in electrical engineering -- the optimal
reconfiguration of distribution grids. For a given graph representing the grid
infrastructure and known nodal loads, the problem consists in finding the
spanning tree that minimizes the total link ohmic losses. A set of constraints
is initially defined to impose topologically valid solutions. These constraints
are then converted to a QUBO model as penalty terms. The electrical losses
terms are finally added to the model as the objective function to minimize. In
order to maximize the performance of solution searching with classical solvers,
with hybrid quantum-classical solvers and with quantum annealers, our QUBO
formulation has the goal of being very efficient in terms of variables usage. A
standard 33-node test network is used as an illustrative example of our general
formulation. Model metrics for this example are presented and discussed.
Finally, the optimal solution for this example was obtained and validated
through comparison with the optimal solution from an independent method.
Related papers
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection [3.6021182997326022]
We formulate a Quadratic Unconstrained Binary Optimization (QUBO) problem suitable for solving using quantum computationcolorblue.
The formulation aims to find communities with maximal self-sufficiency and minimal power flowing between them.
We benchmark the solution quality for multiple approaches: D-Wave's hybrid quantum-classical solvers, classicals, and a branch-and-bound solver.
arXiv Detail & Related papers (2024-07-09T11:44:58Z) - A Hybrid Quantum-Classical Approach to the Electric Mobility Problem [0.8796261172196743]
We suggest a hybrid quantum-classical routine for the NP-hard Electric Vehicle Fleet Charging and Allocation Problem.
We benchmark the performance of the decomposition technique with classical and quantum-inspired metaheuristics.
The major advantage of the proposed approach is that it enables quantum-based methods for this realistic problem with many inequality constraints.
arXiv Detail & Related papers (2023-10-04T12:14:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - Optimization Induced Equilibrium Networks [76.05825996887573]
Implicit equilibrium models, i.e., deep neural networks (DNNs) defined by implicit equations, have been becoming more and more attractive recently.
We show that deep OptEq outperforms previous implicit models even with fewer parameters.
arXiv Detail & Related papers (2021-05-27T15:17:41Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.