A Hybrid Quantum-Classical Approach to the Electric Mobility Problem
- URL: http://arxiv.org/abs/2310.02760v1
- Date: Wed, 4 Oct 2023 12:14:56 GMT
- Title: A Hybrid Quantum-Classical Approach to the Electric Mobility Problem
- Authors: Margarita Veshchezerova, Mikhail Somov, David Bertsche, Steffen
Limmer, Sebastian Schmitt, Michael Perelshtein, Ayush Joshi Tripathi
- Abstract summary: We suggest a hybrid quantum-classical routine for the NP-hard Electric Vehicle Fleet Charging and Allocation Problem.
We benchmark the performance of the decomposition technique with classical and quantum-inspired metaheuristics.
The major advantage of the proposed approach is that it enables quantum-based methods for this realistic problem with many inequality constraints.
- Score: 0.8796261172196743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We suggest a hybrid quantum-classical routine for the NP-hard Electric
Vehicle Fleet Charging and Allocation Problem. The original formulation is a
Mixed Integer Linear Program with continuous variables and inequality
constraints. To separate inequality constraints that are difficult for quantum
routines we use a decomposition in master and pricing problems: the former
targets the assignment of vehicles to reservations and the latter suggests
vehicle exploitation plans that respect the battery state-of-charge
constraints. The master problem is equivalent to the search for an optimal set
partition. In our hybrid scheme, the master problem is reformulated in a
quadratic unconstrained binary optimization problem which can be solved with
quantum annealing on the DWave Advantage system. On large instances, we
benchmark the performance of the decomposition technique with classical and
quantum-inspired metaheuristics: simulated annealing, tabu search, and vector
annealing by NEC. The numerical results with purely classical solvers are
comparable to the solutions from the traditional mixed integer linear
programming approaches in terms of solution quality while being faster. In
addition, it scales better to larger instances. The major advantage of the
proposed approach is that it enables quantum-based methods for this realistic
problem with many inequality constraints. We show this by initial studies on
DWave hardware where optimal solutions can be found for small instances.
Related papers
- Quadratic versus Polynomial Unconstrained Binary Models for Quantum Optimization illustrated on Railway Timetabling [0.0]
We present a generic method to reformulate any problem into a Polynomial Unconstrained Binary Optimization (PUBO) problem.
We also provide a generic reformulation into a Quadratic Unconstrained Binary Optimization (QUBO) problem.
Our results illustrate that the PUBO reformulation outperforms the QUBO one for the problem at hand.
arXiv Detail & Related papers (2024-11-15T09:23:52Z) - Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection [3.6021182997326022]
We formulate a Quadratic Unconstrained Binary Optimization (QUBO) problem suitable for solving using quantum computationcolorblue.
The formulation aims to find communities with maximal self-sufficiency and minimal power flowing between them.
We benchmark the solution quality for multiple approaches: D-Wave's hybrid quantum-classical solvers, classicals, and a branch-and-bound solver.
arXiv Detail & Related papers (2024-07-09T11:44:58Z) - Quantum Relaxation for Solving Multiple Knapsack Problems [7.003282322403712]
Combinatorial problems are a common challenge in business, requiring finding optimal solutions under specified constraints.
In this study, we investigate a hybrid quantum-classical method for constrained optimization problems.
Our proposed method relies on relaxations to local quantum Hamiltonians, defined through commutative maps.
arXiv Detail & Related papers (2024-04-30T11:40:07Z) - Hybrid Quantum-Classical Multilevel Approach for Maximum Cuts on Graphs [1.7720089167719628]
We introduce a scalable hybrid multilevel approach to solve large instances of Max-Cut.
We show that using QAOA within our framework is comparable to classical approaches.
arXiv Detail & Related papers (2023-09-15T23:54:46Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.