Neural forecasting at scale
- URL: http://arxiv.org/abs/2109.09705v3
- Date: Wed, 22 Sep 2021 15:23:11 GMT
- Title: Neural forecasting at scale
- Authors: Philippe Chatigny, Shengrui Wang, Jean-Marc Patenaude, Boris N.
Oreshkin
- Abstract summary: We study the problem of efficiently scaling ensemble-based deep neural networks for time series (TS) forecasting on a large set of time series.
Our model addresses the practical limitations of related models, reducing the training time by half and memory requirement by a factor of 5.
- Score: 8.245069318446415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of efficiently scaling ensemble-based deep neural
networks for time series (TS) forecasting on a large set of time series.
Current state-of-the-art deep ensemble models have high memory and
computational requirements, hampering their use to forecast millions of TS in
practical scenarios. We propose N-BEATS(P), a global multivariate variant of
the N-BEATS model designed to allow simultaneous training of multiple
univariate TS forecasting models. Our model addresses the practical limitations
of related models, reducing the training time by half and memory requirement by
a factor of 5, while keeping the same level of accuracy. We have performed
multiple experiments detailing the various ways to train our model and have
obtained results that demonstrate its capacity to support zero-shot TS
forecasting, i.e., to train a neural network on a source TS dataset and deploy
it on a different target TS dataset without retraining, which provides an
efficient and reliable solution to forecast at scale even in difficult
forecasting conditions.
Related papers
- Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts [25.503695417712997]
Time-MoE is a scalable and unified architecture designed to pre-train larger, more capable forecasting foundation models.
Time-MoE enhances computational efficiency by activating only a subset of networks for each prediction.
For the first time, we scaled a time series foundation model up to 2.4 billion parameters, achieving significantly improved forecasting precision.
arXiv Detail & Related papers (2024-09-24T12:42:18Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
We develop a model error correction for the European Centre for Medium-Range Weather Forecasts using a neural network.
The network is pre-trained offline using a large dataset of operational analyses and analysis increments.
It is then integrated into the IFS within the Object-Oriented Prediction System (OOPS) so as to be used in data assimilation and forecast experiments.
arXiv Detail & Related papers (2024-03-06T13:36:31Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Spatiotemporal Adaptive Neural Network for Long-term Forecasting of
Financial Time Series [0.2793095554369281]
We investigate whether deep neural networks (DNNs) can be used to forecast time series (TS) forecasts conjointly.
We make use of the dynamic factor graph (DFG) to build a multivariate autoregressive model.
With ACTM, it is possible to vary the autoregressive order of a TS model over time and model a larger set of probability distributions.
arXiv Detail & Related papers (2020-03-27T00:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.