論文の概要: Prediction of severe thunderstorm events with ensemble deep learning and
radar data
- arxiv url: http://arxiv.org/abs/2109.09791v1
- Date: Mon, 20 Sep 2021 18:43:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:35:21.428684
- Title: Prediction of severe thunderstorm events with ensemble deep learning and
radar data
- Title(参考訳): アンサンブル深層学習とレーダデータによる激しい雷雨の予測
- Authors: Sabrina Guastavino, Michele Piana, Marco Tizzi, Federico Cassola,
Antonio Iengo, Davide Sacchetti, Enrico Solazzo, Federico Benvenuto
- Abstract要約: 本稿では,激しい雷雨の予報をタイムリーに鳴らすことができる警報装置を実現するためのディープラーニング手法について述べる。
この警報装置はイタリアのリグリア地方で記録された気象レーダーデータに対して検証されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of nowcasting extreme weather events can be addressed by applying
either numerical methods for the solution of dynamic model equations or
data-driven artificial intelligence algorithms. Within this latter framework,
the present paper illustrates how a deep learning method, exploiting videos of
radar reflectivity frames as input, can be used to realize a warning machine
able to sound timely alarms of possible severe thunderstorm events. From a
technical viewpoint, the computational core of this approach is the use of a
value-weighted skill score for both transforming the probabilistic outcomes of
the deep neural network into binary classification and assessing the
forecasting performances. The warning machine has been validated against
weather radar data recorded in the Liguria region, in Italy,
- Abstract(参考訳): 極端な気象イベントを放送する問題は、動的モデル方程式の解法に数値的手法を適用するか、データ駆動人工知能アルゴリズムを適用することで解決できる。
後者の枠組みでは,レーダー反射率フレームの映像を入力として活用する深層学習手法を用いて,激しい雷雨の予報をタイムリーに鳴らすことができる警告機を実現する方法について述べる。
技術的な観点からは、このアプローチの計算コアは、ディープニューラルネットワークの確率的成果をバイナリ分類に変換し、予測性能を評価するために、価値重み付けスキルスコアを使用することである。
この警報装置はイタリアのリグリア地方で記録された気象レーダーデータに対して検証されている。
関連論文リスト
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
本稿では,ぼやけた予測とそれに対応する土台真実のペアによるトレーニングを必要とせずに,ぼやけを解消するための教師なしポストプロセッシング手法を提案する。
非条件相関を任意のぼかしモードに適応させるため、ゼロショットのぼかしカーネル推定機構とオートスケールの denoise ガイダンス戦略を導入する。
論文 参考訳(メタデータ) (2024-10-08T08:38:23Z) - GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCastは、レーダベースの降雨をアンサンブルする深層学習法である。
我々は、トークン化レーダ画像を用いて降水動態を学習するために、GPTモデルを用いて予測を行う。
論文 参考訳(メタデータ) (2024-07-02T09:25:58Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - TempEE: Temporal-Spatial Parallel Transformer for Radar Echo
Extrapolation Beyond Auto-Regression [18.456518902538814]
本稿では,TempEEと呼ばれる新しいレーダエコー外挿アルゴリズムを提案する。
自動回帰の使用を回避し、累積誤差の拡散を防ぐために1ステップの前進戦略を採用する。
広範囲な実験により、TempEE内の様々な成分の有効性と不必要性が検証された。
論文 参考訳(メタデータ) (2023-04-27T12:26:04Z) - A machine-learning approach to thunderstorm forecasting through post-processing of simulation data [0.0]
雷雨は社会や経済に危険をもたらし、信頼できる雷雨予報を要求する。
本研究では,数値天気予報(NWP)データから雷雨の発生を識別するフィードフォワードニューラルネットワークモデルである,SALAMA(Machine Central Learning)を用いた行動同定のための署名ベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:21:15Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
視線衛星システム、無人航空機、高高度プラットフォーム、マイクロ波リンクは雨の影響を受けやすい。
これらのシステムの降雨量予測は、降雨量発生前の地上ゲートウェイを積極的に切り替えてシームレスなサービスを維持するために重要である。
衛星画像データとレーダー画像データとリンク電力測定を用いて将来の雨害を予測するディープラーニングアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-10-02T00:43:02Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。