論文の概要: Meta-Model Structure Selection: Building Polynomial NARX Model for
Regression and Classification
- arxiv url: http://arxiv.org/abs/2109.09917v1
- Date: Tue, 21 Sep 2021 02:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:07:12.693022
- Title: Meta-Model Structure Selection: Building Polynomial NARX Model for
Regression and Classification
- Title(参考訳): メタモデル構造選択:回帰と分類のためのポリノミアルNARXモデルの構築
- Authors: W. R. Lacerda Junior, S. A. M. Martins, E. G. Nepomuceno
- Abstract要約: 本研究は、回帰と分類問題に対するNARXモデルの構造を選択するための新しいメタヒューリスティックなアプローチを提案する。
新しいアルゴリズムのロバスト性は、異なる非線形特性を持つ複数のシミュレートされた実験システムで試験される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a new meta-heuristic approach to select the structure of
polynomial NARX models for regression and classification problems. The method
takes into account the complexity of the model and the contribution of each
term to build parsimonious models by proposing a new cost function formulation.
The robustness of the new algorithm is tested on several simulated and
experimental system with different nonlinear characteristics. The obtained
results show that the proposed algorithm is capable of identifying the correct
model, for cases where the proper model structure is known, and determine
parsimonious models for experimental data even for those systems for which
traditional and contemporary methods habitually fails. The new algorithm is
validated over classical methods such as the FROLS and recent randomized
approaches.
- Abstract(参考訳): 本研究は回帰と分類問題に対する多項式NARXモデルの構造を選択するための新しいメタヒューリスティック手法を提案する。
この手法は、新しいコスト関数の定式化を提案することによって、モデルの複雑さと各項の寄与を考慮に入れる。
新しいアルゴリズムのロバスト性は、異なる非線形特性を持つ複数のシミュレーションおよび実験システムで試験される。
得られた結果から,本アルゴリズムは,適切なモデル構造が知られている場合において,正しいモデルを特定し,従来手法や現代手法が日常的に失敗するシステムにおいても実験データのための類似モデルを決定することができることがわかった。
このアルゴリズムは、FROLSや最近のランダム化手法のような古典的手法で検証される。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
フィードフォワードニューラルネットワーク(FNN)は非線形回帰モデルと見なすことができる。
FNNのためのベイズ情報基準(BIC)を用いて,新しいモデル選択法を提案する。
サンプル外性能よりもBICを選択することは、真のモデルを回復する確率を増大させる。
論文 参考訳(メタデータ) (2022-07-09T11:07:04Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
非線形自己回帰(NARX)成分を特徴とするハイブリッド力学系のモデル群を同定する。
提案手法は, 特定の回帰器を持つ3つの非線形サブモデルからなるSMNARX問題に対して実証される。
論文 参考訳(メタデータ) (2020-09-29T15:00:47Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
サプライチェーンモデリングにおける困難なタスクの1つは、不規則な変動に対して堅牢なモデルを構築することである。
我々は、不確実性を扱うためのパレート最適化(Pareto Optimization)という新しい手法を導入し、これらの不確実性のエントロピーをアプリオリ仮定の下で明示的にモデル化することで拘束する。
論文 参考訳(メタデータ) (2020-04-24T21:04:25Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z) - A Tree Adjoining Grammar Representation for Models Of Stochastic
Dynamical Systems [19.0709328061569]
モデル構造と複雑性を推定するための木結合文法(TAG)を提案する。
TAGは、望ましい構造的制約を課しながら、進化的アルゴリズム(EA)フレームワークでモデルを生成するために使用できる。
我々は,TAGを非線形Box-Jenkinsモデルクラスなど,より一般的なモデルクラスに容易に拡張できることを実証した。
論文 参考訳(メタデータ) (2020-01-15T13:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。