The reverse flow and amplification of heat in a quantum-dot system
- URL: http://arxiv.org/abs/2109.10023v1
- Date: Tue, 21 Sep 2021 08:26:49 GMT
- Title: The reverse flow and amplification of heat in a quantum-dot system
- Authors: Jianying Du, Tong Fu, Jingyi Chen, Shanhe Su, and Jincan Chen
- Abstract summary: We demonstrate that when a quantum dot is embedded between the two reservoirs described by different statistical distribution functions, the reverse flow and amplification of heat can be realized.
The novelty of this device is that the reverse flow of heat does not need externally driving force and this seemingly paradoxical phenomenon does not violate the laws of thermodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that when a quantum dot is embedded between the two reservoirs
described by different statistical distribution functions, the reverse flow and
amplification of heat can be realized by regulating the energy levels of the
quantum dot and the chemical potentials of two reservoirs. The reverse heat
flow and amplification coefficient of the quantum device are calculated. The
novelty of this device is that the reverse flow of heat does not need
externally driving force and this seemingly paradoxical phenomenon does not
violate the laws of thermodynamics. It is further expounded that the quantum
device has some practical applications. For example, the device can work as a
micro/nano cooler. Moreover, the performance characteristics of the cooler are
revealed for different distribution functions. The coefficients of performance
of the cooler operated at different conditions are calculated and the optimum
selection criteria of key parameters are supplied.
Related papers
- All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
We propose a two-reservoir setup to detect the quantum component in the heat flow exchanged by a coherently driven atom with its thermal environment.
tuning the driving parameters switches on and off the quantum and classical contributions to the heat flows, enabling their independent characterization.
arXiv Detail & Related papers (2020-01-28T14:38:32Z) - Heat flow and noncommutative quantum mechanics in phase-space [0.0]
We show that by controlling the new constants introduced in the quantum theory, due to a deformed Heisenberg-Weyl algebra, the heat flow from the hot to the cold system may be enhanced.
We also give a brief discussion on the robustness of the second law of thermodynamics in the context of noncommutative quantum mechanics.
arXiv Detail & Related papers (2019-12-26T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.