論文の概要: Graph Neural Networks for Graph Drawing
- arxiv url: http://arxiv.org/abs/2109.10061v1
- Date: Tue, 21 Sep 2021 09:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:16:29.138824
- Title: Graph Neural Networks for Graph Drawing
- Title(参考訳): グラフ描画のためのグラフニューラルネットワーク
- Authors: Matteo Tiezzi, Gabriele Ciravegna and Marco Gori
- Abstract要約: グラフニューラルネットワーク(GND)の開発のための新しいフレームワークを提案する。
GNDは、効率的で複雑な地図を構築するために、ニューラルネットワークに依存している。
このメカニズムは、フィードフォワードニューラルネットワークによって計算された損失関数によって導出可能であることを実証する。
- 参考スコア(独自算出の注目度): 17.983238300054527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Drawing techniques have been developed in the last few years with the
purpose of producing aesthetically pleasing node-link layouts. Recently, the
employment of differentiable loss functions has paved the road to the massive
usage of Gradient Descent and related optimization algorithms. In this paper,
we propose a novel framework for the development of Graph Neural Drawers (GND),
machines that rely on neural computation for constructing efficient and complex
maps. GND are Graph Neural Networks (GNNs) whose learning process can be driven
by any provided loss function, such as the ones commonly employed in Graph
Drawing. Moreover, we prove that this mechanism can be guided by loss functions
computed by means of Feedforward Neural Networks, on the basis of supervision
hints that express beauty properties, like the minimization of crossing edges.
In this context, we show that GNNs can nicely be enriched by positional
features to deal also with unlabelled vertexes. We provide a proof-of-concept
by constructing a loss function for the edge-crossing and provide quantitative
and qualitative comparisons among different GNN models working under the
proposed framework.
- Abstract(参考訳): グラフ描画技術はここ数年,ノードリンクレイアウトを美観的に表現する目的で開発されてきた。
近年、微分可能損失関数の雇用は、勾配降下および関連する最適化アルゴリズムの大量使用への道を開いた。
本稿では,効率良く複雑な地図を構築するために,神経計算に依存するグラフニューラルネットワーク(gnd)の開発のための新しい枠組みを提案する。
GNDはグラフニューラルネットワーク(GNN)であり、グラフ描画で一般的に使用されるような、与えられた損失関数によって学習プロセスを駆動することができる。
さらに,このメカニズムは,交差エッジの最小化などの美的特徴を表現する監督ヒントに基づいて,フィードフォワードニューラルネットワークによって計算された損失関数によって導出可能であることを示す。
この文脈では、GNNは位置的特徴によって良好にリッチ化され、非ラベルの頂点にも対応できることを示す。
本稿では,エッジクロスのための損失関数を構築し,提案フレームワークの下で動作している異なるGNNモデル間の定量的,質的な比較を行う。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - Probability Passing for Graph Neural Networks: Graph Structure and Representations Joint Learning [8.392545965667288]
グラフニューラルネットワーク(GNN)は、幅広い領域にわたる非ユークリッドデータの解析において顕著な成功を収めている。
この問題を解決するために、ノード特徴の類似性やエッジ確率を計算することにより、タスク固有の潜在構造を推論するために、遅延グラフ推論(LGI)を提案する。
本稿では,隣接ノードのエッジ確率を集約することにより,生成したグラフ構造を洗練するためのProbability Passingという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-15T13:01:47Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Graph Partner Neural Networks for Semi-Supervised Learning on Graphs [16.489177915147785]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データを処理するのに強力であり、ノード分類、リンク予測、グラフ分類などのタスクで最先端のパフォーマンスを達成した。
グラフ畳み込み処理を繰り返した後にノードの表現が区別できない傾向にあるため、深いGCNが過度に滑らかな問題に悩まされることは避けられない。
本稿では,非パラメータ化GCNとパラメータ共有スキームを組み合わせたグラフパートナーニューラルネットワーク(GPNN)を提案する。
論文 参考訳(メタデータ) (2021-10-18T10:56:56Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。