論文の概要: PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
- arxiv url: http://arxiv.org/abs/2109.10083v1
- Date: Tue, 21 Sep 2021 10:39:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:18:44.084025
- Title: PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
- Title(参考訳): PDFNet:都市シーンセグメンテーションのためのポイントワイドDense Flow Network
- Authors: Venkata Satya Sai Ajay Daliparthi
- Abstract要約: 我々はポイントワイド高密度フローネットワーク(PDFNet)という新しい軽量アーキテクチャを提案する。
PDFNetでは、ネットワークのすべての部分へのスムーズな勾配流を可能にするために、密集、残留、複数ショートカット接続を使用します。
提案手法は,小規模なクラスや少数のデータレギュレーションにおいて,ベースラインを著しく上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, using a deep convolutional neural network (CNN) as a feature
encoder (or backbone) is the most commonly observed architectural pattern in
several computer vision methods, and semantic segmentation is no exception. The
two major drawbacks of this architectural pattern are: (i) the networks often
fail to capture small classes such as wall, fence, pole, traffic light, traffic
sign, and bicycle, which are crucial for autonomous vehicles to make accurate
decisions. (ii) due to the arbitrarily increasing depth, the networks require
massive labeled data and additional regularization techniques to converge and
to prevent the risk of over-fitting, respectively. While regularization
techniques come at minimal cost, the collection of labeled data is an expensive
and laborious process. In this work, we address these two drawbacks by
proposing a novel lightweight architecture named point-wise dense flow network
(PDFNet). In PDFNet, we employ dense, residual, and multiple shortcut
connections to allow a smooth gradient flow to all parts of the network. The
extensive experiments on Cityscapes and CamVid benchmarks demonstrate that our
method significantly outperforms baselines in capturing small classes and in
few-data regimes. Moreover, our method achieves considerable performance in
classifying out-of-the training distribution samples, evaluated on Cityscapes
to KITTI dataset.
- Abstract(参考訳): 近年では、Deep Convolutional Neural Network (CNN) を特徴エンコーダ(またはバックボーン)として使用することが、コンピュータビジョン手法において最もよく見られるアーキテクチャパターンであり、セマンティックセグメンテーションは例外ではない。
このアーキテクチャパターンの主な欠点は次の2つです。
(i) ネットワークは、壁、フェンス、ポール、信号機、交通標識、自転車などの小さなクラスを捉えられず、自動運転車が正確な判断を下すのに不可欠である。
(II) ネットワークの深さが任意に増加するため, ネットワークは, 重大ラベル付きデータと追加の正規化技術が収束し, 過度に適合するリスクを防止する必要がある。
正規化技術は最小限のコストで提供されるが、ラベル付きデータの収集は高価で面倒なプロセスである。
本稿では,この2つの欠点に,ポイントワイド高密度フローネットワーク(PDFNet)という新しい軽量アーキテクチャを提案する。
PDFNetでは、ネットワークのすべての部分へのスムーズな勾配流を可能にするために、密集、残留、複数ショートカット接続を使用します。
CityscapesとCamVidベンチマークの広範な実験により、我々の手法は小さなクラスや少数のデータレシエーションにおいて、ベースラインを著しく上回ることを示した。
さらに,本手法は,都市景観からkittiデータセットへ評価したトレーニング分布サンプルの分類において,かなりの性能を発揮する。
関連論文リスト
- Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
本研究では,ハイパースペクトル画像復調におけるニューラルネットワークアーキテクチャの有効性について検討した。
様々なネットワークモデルと修正を導入し、それらを従来の手法や既存の参照ネットワークアプローチと比較する。
その結果、我々のネットワークは、例外的な性能を示す両方のデータセットにおいて、参照モデルよりも優れるか、一致していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T08:02:49Z) - Non-Separable Multi-Dimensional Network Flows for Visual Computing [62.50191141358778]
本研究では,非分離型多次元ネットワークフローに対する新しい定式化法を提案する。
フローは次元ごとに定義されるので、最大化フローは自動的に最適な特徴次元を選択する。
概念実証として,マルチオブジェクト追跡問題にフォーマリズムを適用し,ノイズに対するロバスト性の観点からMOT16ベンチマークのスカラー定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-15T13:21:44Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - RC-Net: A Convolutional Neural Network for Retinal Vessel Segmentation [3.0846824529023387]
本稿では,機能重複と複雑性を低減するために,層ごとのフィルタ数を最適化した完全畳み込みネットワークRC-Netを提案する。
我々の実験では、RC-Netは非常に競争力があり、訓練可能なパラメータが2、3桁も少ない代替船のセグメンテーション手法よりも優れています。
論文 参考訳(メタデータ) (2021-12-21T10:24:01Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
我々はネットワーク埋め込みのための微分可能な量子化法であるd-SNEQを開発した。
d-SNEQは、学習された量子化符号にリッチな高次情報を与えるためにランク損失を組み込む。
トレーニング済みの埋め込みのサイズを大幅に圧縮できるため、ストレージのフットプリントが減少し、検索速度が向上する。
論文 参考訳(メタデータ) (2021-08-20T11:53:05Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
本稿では,HD(High-Definition)マップの小さな領域に対応するスパースなセマンティクス層の階層的表現を学習する文脈において,Capsule Networks(CapsNets)の利用を検討する。
CapsNetsに基づくアーキテクチャを使用することで、検出された画像内の特徴間の階層的関係を維持すると同時に、プール操作によってしばしば発生する空間データの損失を防ぐことができる。
本モデルでは,ネットワーク全体の規模を大幅に削減しつつ,予測に関する最近の研究よりも大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-03-02T11:13:43Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
大規模画像分類タスクにおいてトレーニングされたネットワークの重みからトレーニングサンプルのサブセットの影響を除去できることを示す。
そこで本研究では,混合プライバシー設定における「忘れ」という新しい概念を導入する。
提案手法は,モデル精度のトレードオフを伴わずに忘れることができることを示す。
論文 参考訳(メタデータ) (2020-12-24T19:34:56Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Layer-Net(L-Net)とChannel-Net(C-Net)と呼ばれる2つのコンパクトネットワークは、どのレイヤやフィルタ/チャネルが冗長であるかをインスタンス毎に予測する。
CIFAR-10データセットでは、LC-Netは11.9$times$ less floating-point Operations (FLOPs) となり、他の動的推論手法と比較して最大3.3%精度が向上する。
ImageNetデータセットでは、LC-Netは最大1.4$times$ FLOPsを減らし、Top-1の精度は他の方法よりも4.6%高い。
論文 参考訳(メタデータ) (2020-07-29T23:17:48Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。