論文の概要: An Ultra-Fast Method for Simulation of Realistic Ultrasound Images
- arxiv url: http://arxiv.org/abs/2109.10353v1
- Date: Tue, 21 Sep 2021 05:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 13:39:14.549351
- Title: An Ultra-Fast Method for Simulation of Realistic Ultrasound Images
- Title(参考訳): リアル超音波画像の超高速シミュレーション法
- Authors: Mostafa Sharifzadeh, Habib Benali, Hassan Rivaz
- Abstract要約: フーリエ変換を用いた超高速超音波画像シミュレーション手法を提案する。
本研究では,提案手法により生成された画像を用いたデータ拡張が,Dice類似度係数でフィールドIIを大幅に上回ることを示す。
- 参考スコア(独自算出の注目度): 5.629161809575013
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional neural networks (CNNs) have attracted a rapidly growing
interest in a variety of different processing tasks in the medical ultrasound
community. However, the performance of CNNs is highly reliant on both the
amount and fidelity of the training data. Therefore, scarce data is almost
always a concern, particularly in the medical field, where clinical data is not
easily accessible. The utilization of synthetic data is a popular approach to
address this challenge. However, but simulating a large number of images using
packages such as Field II is time-consuming, and the distribution of simulated
images is far from that of the real images. Herein, we introduce a novel
ultra-fast ultrasound image simulation method based on the Fourier transform
and evaluate its performance in a lesion segmentation task. We demonstrate that
data augmentation using the images generated by the proposed method
substantially outperforms Field II in terms of Dice similarity coefficient,
while the simulation is almost 36000 times faster (both on CPU).
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、医療超音波コミュニティにおける様々な処理タスクへの関心が急速に高まっている。
しかし,CNNの性能はトレーニングデータの量と忠実度に大きく依存している。
したがって、臨床データが容易にアクセスできない医療分野では、データ不足はほとんど常に懸念される。
合成データの利用はこの課題に対処するための一般的なアプローチである。
しかし、フィールドiiのようなパッケージを使って多数のイメージをシミュレートすることは時間がかかり、シミュレーションされたイメージの分布は実際のイメージとは程遠い。
本稿では,フーリエ変換に基づく超高速超音波画像シミュレーション手法を提案する。
提案手法によって生成された画像を用いたデータ拡張は,dice類似度係数の点でフィールドiiを実質的に上回り,シミュレーションは(cpu上では)ほぼ36000倍高速である。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
本稿では,他のモーダルや任意の位置から大量の超音波画像を生成する手法を提案する。
本稿では,他のモダリティからのセグメンテーション,最適化されたデータ表現,GPUによるモンテカルロ経路のトレースを用いた新しいシミュレーションパイプラインを提案する。
提案手法により,患者固有の超音波画像の高速かつ正確な生成が可能となり,ナビゲーション関連タスクのためのトレーニングネットワークのユーザビリティが実証された。
論文 参考訳(メタデータ) (2024-02-09T15:14:48Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
超音波画像における臓器の解剖学的セグメンテーションは多くの臨床応用に不可欠である。
既存のディープニューラルネットワークは、臨床的に許容できるパフォーマンスを達成するために、トレーニングのために大量のラベル付きデータを必要とする。
本稿では,タスクベース超音速画像表現を最適化する学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T16:29:39Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Between Generating Noise and Generating Images: Noise in the Correct
Frequency Improves the Quality of Synthetic Histopathology Images for Digital
Pathology [0.0]
合成画像は、既存のデータセットを拡張し、AIアルゴリズムを改善し、検証する。
意味マスクに適切な空間周波数でランダムな単一画素ノイズを導入することで,合成画像の品質が劇的に向上することを示す。
我々の研究は、制限のないデータセットに対する需要に基づいて合成データを生成するためのシンプルで強力なアプローチを示唆している。
論文 参考訳(メタデータ) (2023-02-13T17:49:24Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
計算シミュレーションは、バーチャルリアリティーにおけるそのようなスキルの訓練を容易にする。
インタラクティブな時間に任意のレンダリングやシミュレーションプロセスをバイパスするためにここに提案します。
我々は、専用のジェネレータアーキテクチャと入力供給方式を備えた生成的対向フレームワークを使用する。
論文 参考訳(メタデータ) (2021-01-20T21:58:19Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z) - Breast lesion segmentation in ultrasound images with limited annotated
data [2.905751301655124]
セグメント化ネットワークを事前学習するために,アメリカのシミュレーション画像と自然画像を補助的データセットとして用いることを提案する。
プレトレーニングネットワークの微調整により,スクラッチによるトレーニングに比べて,ダイススコアが21%向上することを示す。
論文 参考訳(メタデータ) (2020-01-21T03:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。