SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and
Benchmarking
- URL: http://arxiv.org/abs/2109.10399v4
- Date: Tue, 16 Jan 2024 18:59:12 GMT
- Title: SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and
Benchmarking
- Authors: Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna
Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam
Levang, Ernest Fraenkel and Lester Mackey
- Abstract summary: SubseasonalClimateUSA is a curated dataset for training and benchmarking subseasonal forecasting models in the United States.
We use this dataset to benchmark a diverse suite of models, including operational dynamical models, classical meteorological baselines, and ten state-of-the-art machine learning and deep learning-based methods from the literature.
- Score: 20.442879707675115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subseasonal forecasting of the weather two to six weeks in advance is
critical for resource allocation and advance disaster notice but poses many
challenges for the forecasting community. At this forecast horizon,
physics-based dynamical models have limited skill, and the targets for
prediction depend in a complex manner on both local weather variables and
global climate variables. Recently, machine learning methods have shown promise
in advancing the state of the art but only at the cost of complex data
curation, integrating expert knowledge with aggregation across multiple
relevant data sources, file formats, and temporal and spatial resolutions. To
streamline this process and accelerate future development, we introduce
SubseasonalClimateUSA, a curated dataset for training and benchmarking
subseasonal forecasting models in the United States. We use this dataset to
benchmark a diverse suite of models, including operational dynamical models,
classical meteorological baselines, and ten state-of-the-art machine learning
and deep learning-based methods from the literature. Overall, our benchmarks
suggest simple and effective ways to extend the accuracy of current operational
models. SubseasonalClimateUSA is regularly updated and accessible via the
https://github.com/microsoft/subseasonal_data/ Python package.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
arXiv Detail & Related papers (2022-11-29T01:11:04Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - WeatherBench: A benchmark dataset for data-driven weather forecasting [17.76377510880905]
We present a benchmark dataset for data-driven medium-range weather forecasting.
We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models.
We provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models.
arXiv Detail & Related papers (2020-02-02T19:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.