Towards The Automatic Coding of Medical Transcripts to Improve
Patient-Centered Communication
- URL: http://arxiv.org/abs/2109.10514v1
- Date: Wed, 22 Sep 2021 04:37:05 GMT
- Title: Towards The Automatic Coding of Medical Transcripts to Improve
Patient-Centered Communication
- Authors: Gilchan Park, Julia Taylor Rayz, Cleveland G. Shields
- Abstract summary: We adopt three machine learning algorithms to categorize lines in transcripts into corresponding codes.
There is evidence to distinguish the codes, and this is considered to be sufficient for training of human annotators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to provide an approach for automatic coding of
physician-patient communication transcripts to improve patient-centered
communication (PCC). PCC is a central part of high-quality health care. To
improve PCC, dialogues between physicians and patients have been recorded and
tagged with predefined codes. Trained human coders have manually coded the
transcripts. Since it entails huge labor costs and poses possible human errors,
automatic coding methods should be considered for efficiency and effectiveness.
We adopted three machine learning algorithms (Na\"ive Bayes, Random Forest, and
Support Vector Machine) to categorize lines in transcripts into corresponding
codes. The result showed that there is evidence to distinguish the codes, and
this is considered to be sufficient for training of human annotators.
Related papers
- CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Exploring the Consistency, Quality and Challenges in Manual and
Automated Coding of Free-text Diagnoses from Hospital Outpatient Letters [4.743464936070594]
This work evaluates the quality and consistency of both manual and automated clinical coding of diagnoses from hospital outpatient letters.
A gold standard was constructed by a panel of clinicians from a subset of the annotated diagnoses.
Results indicate that humans slightly out-performed automated coding, while both performed notably better when there was only a single diagnosis contained in the free-text description.
arXiv Detail & Related papers (2023-11-17T20:32:24Z) - Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
Prediction of medical codes from clinical notes is a practical and essential need for every healthcare delivery organization.
The biggest challenge is directly identifying appropriate medical codes from several thousands of high-dimensional codes from unstructured free-text clinical notes.
Recent studies have shown the state-of-the-art code prediction results of full-fledged deep learning-based methods.
arXiv Detail & Related papers (2022-10-30T14:24:13Z) - Clinical Dialogue Transcription Error Correction using Seq2Seq Models [1.663938381339885]
We present a seq2seq learning approach for ASR transcription error correction of clinical dialogues.
We fine-tune a seq2seq model on a mask-filling task using a domain-specific dataset which we have shared publicly for future research.
arXiv Detail & Related papers (2022-05-26T18:27:17Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction
from Clinical Notes by Machines [0.42641920138420947]
We present our Read, Attend, and Code (RAC) model for learning the medical code assignment mappings.
RAC establishes a new state of the art (SOTA) considerably outperforming the current best Macro-F1 by 18.7%.
This new milestone marks a meaningful step toward fully autonomous medical coding (AMC) in machines.
arXiv Detail & Related papers (2021-07-10T06:01:58Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Transforming unstructured voice and text data into insight for paramedic
emergency service using recurrent and convolutional neural networks [68.8204255655161]
Paramedics often have to make lifesaving decisions within a limited time in an ambulance.
This study aims to automatically fuse voice and text data to provide tailored situational awareness information to paramedics.
arXiv Detail & Related papers (2020-05-30T06:47:02Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.