Simulated Annealing for Emotional Dialogue Systems
- URL: http://arxiv.org/abs/2109.10715v1
- Date: Wed, 22 Sep 2021 13:17:17 GMT
- Title: Simulated Annealing for Emotional Dialogue Systems
- Authors: Chengzhang Dong and Chenyang Huang and Osmar Za\"iane and Lili Mou
- Abstract summary: We consider the task of expressing a specific emotion for dialogue generation.
Our proposed method shows 12% improvements in emotion accuracy compared with the previous state-of-the-art method.
- Score: 22.96717845092991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explicitly modeling emotions in dialogue generation has important
applications, such as building empathetic personal companions. In this study,
we consider the task of expressing a specific emotion for dialogue generation.
Previous approaches take the emotion as an input signal, which may be ignored
during inference. We instead propose a search-based emotional dialogue system
by simulated annealing (SA). Specifically, we first define a scoring function
that combines contextual coherence and emotional correctness. Then, SA
iteratively edits a general response and searches for a sentence with a higher
score, enforcing the presence of the desired emotion. We evaluate our system on
the NLPCC2017 dataset. Our proposed method shows 12% improvements in emotion
accuracy compared with the previous state-of-the-art method, without hurting
the generation quality (measured by BLEU).
Related papers
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
We propose a new task "Emotion Deducing Explanation in Dialogues" (EDEN)
EDEN recognizes emotion and causes in an explicitly thinking way.
It can help Large Language Models (LLMs) achieve better recognition of emotions and causes.
arXiv Detail & Related papers (2024-06-07T08:58:29Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
We propose a novel emotion correlation enhanced empathetic dialogue generation framework.
Specifically, a multi-resolution emotion graph is devised to capture context-based emotion interactions.
We then propose an emotion correlation enhanced decoder, with a novel correlation-aware aggregation and soft/hard strategy.
arXiv Detail & Related papers (2023-11-25T12:47:39Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
We propose a two-stage conversational agent for the generation of emotional dialogue.
First, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics.
Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis.
arXiv Detail & Related papers (2023-01-12T10:03:56Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - Constructing Emotion Consensus and Utilizing Unpaired Data for
Empathetic Dialogue Generation [22.2430593119389]
We propose a dual-generative model, Dual-Emp, to simultaneously construct the emotion consensus and utilize some external unpaired data.
Our method outperforms competitive baselines in producing coherent and empathetic responses.
arXiv Detail & Related papers (2021-09-16T07:57:01Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.