論文の概要: Natural Typing Recognition vis Surface Electromyography
- arxiv url: http://arxiv.org/abs/2109.10743v1
- Date: Wed, 22 Sep 2021 13:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 17:01:54.878932
- Title: Natural Typing Recognition vis Surface Electromyography
- Title(参考訳): 自然型認識 vis表面筋電図
- Authors: Michael S. Crouch, Mingde Zheng, Michael S. Eggleston
- Abstract要約: 深層学習を用いて、筋電位によるタイプ付きテキストの再構築において、90%以上の文字レベルの精度を達成する。
我々のアーキテクチャは、不規則な間隔で発生し、しばしば時間的に重複する自然なコンピュータタイピングの急速な動きを認識する。
また,空間分解能や時間分解能を総合的に低下させた場合のジェスチャー認識についても検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: By using a computer keyboard as a finger recording device, we construct the
largest existing dataset for gesture recognition via surface electromyography
(sEMG), and use deep learning to achieve over 90% character-level accuracy on
reconstructing typed text entirely from measured muscle potentials. We
prioritize the temporal structure of the EMG signal instead of the spatial
structure of the electrode layout, using network architectures inspired by
those used for real-time spoken language transcription. Our architecture
recognizes the rapid movements of natural computer typing, which occur at
irregular intervals and often overlap in time. The extensive size of our
dataset also allows us to study gesture recognition after synthetically
downgrading the spatial or temporal resolution, showing the system capabilities
necessary for real-time gesture recognition.
- Abstract(参考訳): 指記録装置としてコンピュータキーボードを用いることで,表面筋電図(semg)によるジェスチャ認識のための最大データセットを構築し,筋電位測定から90%以上の文字レベルの精度を達成するためにディープラーニングを用いた。
本稿では,リアルタイム音声の書き起こしに使用するものに触発されたネットワークアーキテクチャを用いて,電極レイアウトの空間構造ではなく,emg信号の時間構造を優先する。
我々のアーキテクチャは、不規則な間隔で発生し、しばしば重複する自然なコンピュータタイピングの急速な動きを認識する。
データセットのサイズを大きくすることで、空間的または時間的解像度を合成的に低下させた後、ジェスチャー認識を研究し、リアルタイムジェスチャー認識に必要なシステム能力を示すことができます。
関連論文リスト
- Machine Learning-based sEMG Signal Classification for Hand Gesture Recognition [3.9440964696313485]
筋電図(EMG)信号を用いて手の動きを解析・分類する。
本稿では,新しい特徴抽出手法を用いてEMGに基づく手動作認識の性能をベンチマークすることを目的とする。
論文 参考訳(メタデータ) (2024-11-23T21:29:51Z) - Exploring Emerging Trends and Research Opportunities in Visual Place Recognition [28.76562316749074]
視覚に基づく認識は、コンピュータビジョンとロボティクスのコミュニティにおける長年の課題である。
ほとんどのローカライズ実装では、視覚的位置認識が不可欠である。
研究者は最近、視覚言語モデルに注意を向けている。
論文 参考訳(メタデータ) (2024-11-18T11:36:17Z) - emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwertyは、QWERTYキーボードでタッチ入力しながら手首に記録された非侵襲的筋電図信号の大規模なデータセットである。
1,135のセッションが108ユーザと346時間の録画にまたがっており、これまでで最大の公開データセットである。
sEMG信号のみを用いたキープレッシャの予測において,高いベースライン性能を示す。
論文 参考訳(メタデータ) (2024-10-26T05:18:48Z) - Jointly Modeling Spatio-Temporal Features of Tactile Signals for Action Classification [50.63919418371698]
ウェアラブルエレクトロニクスによって収集される触覚信号は、人間の行動のモデリングと理解に不可欠である。
既存の動作分類法では、触覚信号の空間的特徴と時間的特徴を同時に捉えることができない。
S-Temporal Aware Aware Transformer (STAT) を提案する。
論文 参考訳(メタデータ) (2024-01-21T03:47:57Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
本稿では,ネットワーク・テンポラルエンコーディングと繰り返しアテンションブロックのハイブリッド構造を用いて,解釈可能な表現を取得するディープニューラルネットワークを提案する。
提案したアーキテクチャは、公開されているDEAPデータセット上での感情分類の最先端結果を上回ることを実証する。
論文 参考訳(メタデータ) (2023-07-06T15:35:14Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Towards Domain-Independent and Real-Time Gesture Recognition Using
mmWave Signal [11.76969975145963]
DI-Gesture はドメインに依存しないリアルタイムの mmWave ジェスチャー認識システムである。
リアルタイムシナリオでは、DI-Gesutreの精度は平均推定時間2.87msで97%以上に達する。
論文 参考訳(メタデータ) (2021-11-11T13:28:28Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
本稿では,ディープエンコーダ・デコーダ方式cnnの低次元潜在空間の適応チューニング法を提案する。
粒子加速器における時間変動荷電粒子ビームの特性を予測するためのアプローチを実証する。
論文 参考訳(メタデータ) (2021-05-08T03:50:45Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。