An artificial neural network approach to bifurcating phenomena in
computational fluid dynamics
- URL: http://arxiv.org/abs/2109.10765v1
- Date: Wed, 22 Sep 2021 14:42:36 GMT
- Title: An artificial neural network approach to bifurcating phenomena in
computational fluid dynamics
- Authors: Federico Pichi and Francesco Ballarin and Gianluigi Rozza and Jan S.
Hesthaven
- Abstract summary: We discuss the POD-NN approach dealing with non-smooth solutions set of nonlinear parametrized PDEs.
We propose a reduced manifold-based bifurcation diagram for a non-intrusive recovery of the critical points evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work deals with the investigation of bifurcating fluid phenomena using a
reduced order modelling setting aided by artificial neural networks. We discuss
the POD-NN approach dealing with non-smooth solutions set of nonlinear
parametrized PDEs. Thus, we study the Navier-Stokes equations describing: (i)
the Coanda effect in a channel, and (ii) the lid driven triangular cavity flow,
in a physical/geometrical multi-parametrized setting, considering the effects
of the domain's configuration on the position of the bifurcation points.
Finally, we propose a reduced manifold-based bifurcation diagram for a
non-intrusive recovery of the critical points evolution. Exploiting such
detection tool, we are able to efficiently obtain information about the pattern
flow behaviour, from symmetry breaking profiles to attaching/spreading
vortices, even at high Reynolds numbers.
Related papers
- Kernel Approximation of Fisher-Rao Gradient Flows [52.154685604660465]
We present a rigorous investigation of Fisher-Rao and Wasserstein type gradient flows concerning their gradient structures, flow equations, and their kernel approximations.
Specifically, we focus on the Fisher-Rao geometry and its various kernel-based approximations, developing a principled theoretical framework.
arXiv Detail & Related papers (2024-10-27T22:52:08Z) - Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - Polyhedral Complex Derivation from Piecewise Trilinear Networks [5.558635708358242]
Developments in neural surface representation learning incorporate non-linear positional encoding.
This poses challenges in applying mesh extraction techniques based on Continuous Piecewise Affine functions.
We present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes.
arXiv Detail & Related papers (2024-02-16T02:01:24Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
We study Discretized Neural Networks (DNNs) composed of low-precision weights and activations.
DNNs suffer from either infinite or zero gradients due to the non-differentiable discrete function during training.
arXiv Detail & Related papers (2023-02-07T10:51:53Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent
Resolution of Particle-Based Liquids [0.6882042556551611]
We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks.
Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation.
arXiv Detail & Related papers (2021-06-09T15:36:23Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
We develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map.
In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields.
arXiv Detail & Related papers (2021-03-10T17:01:42Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.