論文の概要: Geo-Context Aware Study of Vision-Based Autonomous Driving Models and
Spatial Video Data
- arxiv url: http://arxiv.org/abs/2109.10895v1
- Date: Fri, 20 Aug 2021 17:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-27 00:00:21.728240
- Title: Geo-Context Aware Study of Vision-Based Autonomous Driving Models and
Spatial Video Data
- Title(参考訳): 視覚に基づく自律走行モデルと空間映像データの地理文脈認識
- Authors: Suphanut Jamonnak, Ye Zhao, Xinyi Huang, and Md Amiruzzaman
- Abstract要約: 視覚に基づくディープラーニング(DL)手法は,大規模クラウドソースのビデオデータセットから自律走行モデルの学習に大きな進歩をもたらした。
我々は,大規模ADMビデオデータとともに,自律運転モデル(ADM)予測のための地理コンテキスト対応可視化システムを開発した。
- 参考スコア(独自算出の注目度): 9.883009014227815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-based deep learning (DL) methods have made great progress in learning
autonomous driving models from large-scale crowd-sourced video datasets. They
are trained to predict instantaneous driving behaviors from video data captured
by on-vehicle cameras. In this paper, we develop a geo-context aware
visualization system for the study of Autonomous Driving Model (ADM)
predictions together with large-scale ADM video data. The visual study is
seamlessly integrated with the geographical environment by combining DL model
performance with geospatial visualization techniques. Model performance
measures can be studied together with a set of geospatial attributes over map
views. Users can also discover and compare prediction behaviors of multiple DL
models in both city-wide and street-level analysis, together with road images
and video contents. Therefore, the system provides a new visual exploration
platform for DL model designers in autonomous driving. Use cases and domain
expert evaluation show the utility and effectiveness of the visualization
system.
- Abstract(参考訳): 視覚に基づくディープラーニング(DL)手法は,大規模クラウドソースのビデオデータセットから自律走行モデルの学習に大きな進歩をもたらした。
それらは車載カメラで捉えたビデオデータから瞬時運転行動を予測するように訓練されている。
本稿では,大規模ADMビデオデータとともに,自律走行モデル(ADM)予測研究のための地理コンテキスト対応可視化システムを開発する。
本研究は, DLモデルの性能と地理空間可視化技術を組み合わせることで, 地理的環境とシームレスに統合される。
モデル性能測定は、地図ビュー上の地理空間属性のセットとともに研究することができる。
ユーザーは、道路画像やビデオコンテンツとともに、街路レベルの分析で複数のDLモデルの予測行動を発見し、比較することができる。
そこでこのシステムは、自動運転におけるDLモデル設計者のための新しい視覚探索プラットフォームを提供する。
ユースケースとドメインエキスパートの評価は、可視化システムの有用性と有効性を示している。
関連論文リスト
- DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
私たちは、複雑な駆動ダイナミクスを備えたインタラクティブな世界モデルのトレーニング用に作られた最初のデータセットであるDrivingDojoを紹介します。
私たちのデータセットには、完全な運転操作、多様なマルチエージェント・インタープレイ、豊富なオープンワールド運転知識を備えたビデオクリップが含まれています。
論文 参考訳(メタデータ) (2024-10-14T17:19:23Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA(Comprehensive Vision-Language-Action)データセットは、80時間以上にわたる現実世界の運転ビデオで構成されている。
このデータセットは、堅牢で解釈可能で、データ駆動の自動運転システムのためのフレームワークを確立する。
論文 参考訳(メタデータ) (2024-08-19T09:53:49Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
本稿では、フロントカメラ画像のみを用いて、交通流の潜在表現を学習するために、Kalmanフィルタの強化されたリカレントニューラルネットワークアーキテクチャを提案する。
その結果,車両の明示的なモデル(カルマンフィルタを用いて推定した状態)をエンドツーエンド学習に組み込むことで,性能が著しく向上した。
論文 参考訳(メタデータ) (2023-05-24T02:27:34Z) - Video Killed the HD-Map: Predicting Multi-Agent Behavior Directly From
Aerial Images [14.689298253430568]
本稿では,最小限のアノテーションを必要とする航空画像ベースマップ(AIM)の表現を提案し,歩行者や車両などの交通機関に道路状況情報を提供する。
以上の結果から,特にAIM表現を用いた歩行者の競合的マルチエージェント軌道予測性能が示された。
論文 参考訳(メタデータ) (2023-05-19T17:48:01Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
PPGeo (Policy Pre-training via Geometric Modeling) は,視覚運動運転における政策事前学習のための,直感的かつ直接的な完全自己教師型フレームワークである。
本研究では,大規模な未ラベル・未校正動画の3次元幾何学シーンをモデル化することにより,ポリシー表現を強力な抽象化として学習することを目的とする。
第1段階では、幾何モデリングフレームワークは、2つの連続したフレームを入力として、ポーズと深さの予測を同時に生成する。
第2段階では、視覚エンコーダは、将来のエゴモーションを予測し、現在の視覚観察のみに基づいて測光誤差を最適化することにより、運転方針表現を学習する。
論文 参考訳(メタデータ) (2023-01-03T08:52:49Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
自律運転システムは、世界の抽象的な記述を形成するために、様々なセンサから収集した情報を効果的に活用すべきである。
オートエンコーダのようなディープラーニングモデルは、受信データのストリームからコンパクトな潜在表現を学習できるため、その目的のために使用できる。
この研究は、自動エンコーダとリカレントニューラルネットワークを組み合わせて現在の潜伏表現を学習する、複合dynAmicautoencodeRネットワークアーキテクチャであるCARNetを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:15:42Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - An LSTM-Based Autonomous Driving Model Using Waymo Open Dataset [7.151393153761375]
本稿では,短期記憶モデル(LSTM)を用いた自律走行モデルの動作を模倣する手法を提案する。
実験結果から,本モデルは動作予測においていくつかのモデルより優れることがわかった。
論文 参考訳(メタデータ) (2020-02-14T05:28:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。