論文の概要: Alzheimers Dementia Detection using Acoustic & Linguistic features and
Pre-Trained BERT
- arxiv url: http://arxiv.org/abs/2109.11010v1
- Date: Wed, 22 Sep 2021 19:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 15:12:13.865795
- Title: Alzheimers Dementia Detection using Acoustic & Linguistic features and
Pre-Trained BERT
- Title(参考訳): 音・言語特徴とプレトレーニングBERTを用いたアルツハイマー認知症検出
- Authors: Akshay Valsaraj, Ithihas Madala, Nikhil Garg, Veeky Baths
- Abstract要約: 本研究は,ADReSS(The Alzheimers Dementia Recognition through Spontaneous Speech)2021 Challengeにおける分類課題の3つのモデルに焦点を当てた。
モデルのトレーニングと検証にはADReSS Challengeが提供するバランスのとれたデータセットを使用します。
Model 1 は eGeMAPs の機能セットの様々な音響的特徴を使い、Model 2 は自動生成した文字起こしから生成した様々な言語的特徴を使い、Model 3 は自動生成した文字起こしを直接使用して、事前訓練されたBERT と TF-IDF を用いて特徴を抽出する。
- 参考スコア(独自算出の注目度): 1.2125503552019503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimers disease is a fatal progressive brain disorder that worsens with
time. It is high time we have inexpensive and quick clinical diagnostic
techniques for early detection and care. In previous studies, various Machine
Learning techniques and Pre-trained Deep Learning models have been used in
conjunction with the extraction of various acoustic and linguistic features.
Our study focuses on three models for the classification task in the ADReSS
(The Alzheimers Dementia Recognition through Spontaneous Speech) 2021
Challenge. We use the well-balanced dataset provided by the ADReSS Challenge
for training and validating our models. Model 1 uses various acoustic features
from the eGeMAPs feature-set, Model 2 uses various linguistic features that we
generated from auto-generated transcripts and Model 3 uses the auto-generated
transcripts directly to extract features using a Pre-trained BERT and TF-IDF.
These models are described in detail in the models section.
- Abstract(参考訳): アルツハイマー病は、時間とともに悪化する致命的な進行性脳疾患である。
早期発見とケアのための,安価かつ迅速な臨床診断技術が提供される時期が来た。
これまでの研究では、さまざまな機械学習技術と事前学習されたディープラーニングモデルが、さまざまな音響的特徴と言語的特徴の抽出と併用されている。
本研究は,ADReSS(The Alzheimers Dementia Recognition through Spontaneous Speech)2021 Challengeにおける分類課題の3つのモデルに焦点を当てた。
モデルのトレーニングと検証にはADReSS Challengeが提供するバランスのとれたデータセットを使用します。
Model 1 は eGeMAPs の機能セットの様々な音響的特徴を使い、Model 2 は自動生成した文字起こしから生成した様々な言語的特徴を使い、Model 3 は自動生成した文字起こしを直接使用して、事前訓練されたBERT と TF-IDF を用いて特徴を抽出する。
これらのモデルは、モデルセクションで詳細に説明されます。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Context-aware attention layers coupled with optimal transport domain
adaptation and multimodal fusion methods for recognizing dementia from
spontaneous speech [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、認知症の主要な原因である複雑な神経認知疾患である。
そこで本研究では,AD患者検出のための新しい手法を提案する。
ADReSSとADReSSo Challengeで実施した実験は、既存の研究イニシアチブに対して導入したアプローチの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T18:18:09Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
自然言語処理と機械学習はアルツハイマー病を確実に検出するための有望な技術を提供する。
我々は,10種類の線形回帰モデルの性能を比較し,比較した。
与えられたタスクに対して,手作りの言語的特徴は音響的特徴や学習的特徴よりも重要であることがわかった。
論文 参考訳(メタデータ) (2022-09-13T15:35:31Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Multi-Modal Detection of Alzheimer's Disease from Speech and Text [3.702631194466718]
本稿では,アルツハイマー病(AD)の診断に音声と対応する文字を同時に利用する深層学習手法を提案する。
提案手法は,Dementiabank Pitt corpus のトレーニングおよび評価において,85.3%のクロスバリデーション精度を実現する。
論文 参考訳(メタデータ) (2020-11-30T21:18:17Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
自然言語処理と機械学習はアルツハイマー病(AD)を確実に検出するための有望な技術を提供する
最近のADReSSチャレンジデータセットにおいて、AD検出のための2つのアプローチのパフォーマンスを比較し、比較する。
認知障害検出における言語学の重要性を考えると,細調整BERTモデルはAD検出タスクにおいて特徴に基づくアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T04:50:47Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
アルツハイマー認知症(英語: Alzheimer's Dementia、AD)は、認知機能に影響を与える不治の、不安定で進行性の神経変性疾患である。
自発音声タスクによるアルツハイマー認知は、ADの分類と予測のために、音響的に前処理とバランスの取れたデータセットを提供する。
論文 参考訳(メタデータ) (2020-06-12T17:51:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。