論文の概要: Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech
- arxiv url: http://arxiv.org/abs/2409.16322v1
- Date: Sun, 22 Sep 2024 02:06:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 09:03:58.408809
- Title: Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech
- Title(参考訳): 自発音声からのアルツハイマー病検出のクラス内変動に向けて
- Authors: Jiawen Kang, Dongrui Han, Lingwei Meng, Jingyan Zhou, Jinchao Li, Xixin Wu, Helen Meng,
- Abstract要約: アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 60.08015780474457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models to distinguish between individuals with AD and those without. Unlike conventional classification tasks, we identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments. Given that many AD detection tasks lack fine-grained labels, simplistic binary classification may overlook two crucial aspects: within-class differences and instance-level imbalance. The former compels the model to map AD samples with varying degrees of impairment to a single diagnostic label, disregarding certain changes in cognitive function. While the latter biases the model towards overrepresented severity levels. This work presents early efforts to address these challenges. We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively. Experiments on the ADReSS and ADReSSo datasets demonstrate that the proposed methods significantly improve detection accuracy. Further analysis reveals that SoTD effectively harnesses the strengths of multiple component models, while InRe substantially alleviates model over-fitting. These findings provide insights for developing more robust and reliable AD detection models.
- Abstract(参考訳): アルツハイマー病(AD)の検出は、ADと非ADの個人を識別するために機械学習分類モデルを使用する有望な研究領域として浮上している。
従来の分類課題とは異なり、AD検出において、クラス内変異は重要な課題として認識され、ADを持つ個人は認知障害のスペクトルを示す。
多くのAD検出タスクにはきめ細かいラベルがないため、単純化されたバイナリ分類は、クラス内差とインスタンスレベルの不均衡という2つの重要な側面を見落としてしまう可能性がある。
前者は、認知機能の特定の変化を無視して、1つの診断ラベルに様々な障害度でADサンプルをマッピングするモデルを補完する。
後者はモデルが過剰に表現された重大度レベルに偏っている。
この研究はこれらの課題に対処するための初期の取り組みを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
ADReSSとADReSSoデータセットの実験により,提案手法は検出精度を大幅に向上することが示された。
さらに分析したところ、SoTDは複数のコンポーネントモデルの強みを効果的に活用し、InReはモデルの過度な適合を実質的に軽減していることがわかった。
これらの結果は、より堅牢で信頼性の高いAD検出モデルを開発するための洞察を与える。
関連論文リスト
- Class Balancing Diversity Multimodal Ensemble for Alzheimer's Disease Diagnosis and Early Detection [1.1475433903117624]
アルツハイマー病は、その流行の増加と関連する社会的コストにより、世界的な健康上の問題を引き起こす。
従来の診断法と単一モダリティデータは、早期ADの同定に不足することが多い。
本研究は,iMbalancEd Data(IMBALMED)におけるクラスBALancingの多様性を利用したマルチモーダルenseMbleの新たなアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-14T10:56:43Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
アルツハイマー病(英語: Alzheimer's disease、AD)は認知能力の低下が進行する認知症である。
構造的MRIと機能的MRIを利用して,病原性GMと機能的ネットワーク接続の変化を調査した。
本稿では,Cycle GANを用いた生成モジュールを用いたDLに基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T07:31:47Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Diagnosing Human-object Interaction Detectors [42.283857276076596]
本稿では,HOI検出モデルの定量的なブレークダウン解析を行うための診断ツールボックスを提案する。
我々は8つの最先端HOI検出モデルを分析し、今後の研究を促進する貴重な診断洞察を提供する。
論文 参考訳(メタデータ) (2023-08-16T17:39:15Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Data-Efficient and Interpretable Tabular Anomaly Detection [54.15249463477813]
本稿では,ホワイトボックスモデルクラスである一般化付加モデルを適用し,異常を検出する新しいフレームワークを提案する。
さらに、提案フレームワークであるDIADは、ラベル付きデータの少量を組み込んで、半教師付き設定における異常検出性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2022-03-03T22:02:56Z) - Explainable Identification of Dementia from Transcripts using
Transformer Networks [0.0]
アルツハイマー病(英語: Alzheimer's disease, AD)は、認知症の主要な原因であり、記憶喪失を伴い、時間通りに診断されない場合の日常生活に深刻な結果をもたらす可能性がある。
本稿では,2つのマルチタスク学習モデルを紹介し,主課題は認知症(バイナリ分類)の同定であり,補助課題は認知症の重症度(マルチクラス分類)の同定に対応する。
マルチタスク学習環境におけるAD患者検出の精度は84.99%である。
論文 参考訳(メタデータ) (2021-09-14T21:49:05Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
自然言語処理と機械学習はアルツハイマー病(AD)を確実に検出するための有望な技術を提供する
最近のADReSSチャレンジデータセットにおいて、AD検出のための2つのアプローチのパフォーマンスを比較し、比較する。
認知障害検出における言語学の重要性を考えると,細調整BERTモデルはAD検出タスクにおいて特徴に基づくアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T04:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。