Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer
- URL: http://arxiv.org/abs/2109.11371v5
- Date: Mon, 28 Mar 2022 03:12:51 GMT
- Title: Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer
- Authors: Zheng-Xin Guo, Xi-Dan Hu, Xue-Jia Yu, and Zhi Li
- Abstract summary: We explore the dynamic behavior of 2D large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and experimentally.
A quantum walk experiment is designed and conducted on the basis of IBM programmable quantum processors.
- Score: 2.643309520855375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum magnets are never short of novel and fascinating dynamics, yet its
simulation by classical computers requires exponentially-scaled computation
resources, which renders the research on large-scale many-body dynamics
fiendishly difficult. In this letter, we explore the dynamic behavior of 2D
large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and
experimentally. First, the analytical solution of magnon dynamics is obtained
to show an obvious ballistic propagation of magnon, which is typical for
quantum walk. Then, we verify the dynamic behavior of the system through
numerical approach of exact diagonalization and tensor network method. We also
calculate out-of-time ordered correlators and butterfly velocities among
different lattice points, finding that they can well depict the competition
between different couplings. Finally, a quantum walk experiment is designed and
conducted on the basis of IBM programmable quantum processors, and the
experimental results are in consistence with our theoretical predictions. Since
the analytical results can be used, in principle, to predict the behavior of
large-scale quantum many-body systems and even those infinitely large, this
work will help facilitate further research on quantum walk and quantum
many-body dynamics in large-scale lattice systems, guide future design of
quantum computers, as well as popularize quantum computers until they are known
and available to every household in the world.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum kernels for classifying dynamical singularities in a multiqubit system [0.0]
We use quantum Kernels to classify dynamical singularities of the rate function for a multiqubit system.
Our results show that this quantum dynamical critical problem can be efficiently solved using physically inspiring quantum Kernels.
arXiv Detail & Related papers (2023-10-06T15:01:37Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Variational classical networks for dynamics in interacting quantum
matter [0.0]
We introduce a variational class of wavefunctions based on complex networks of classical spins akin to artificial neural networks.
We show that our method can be applied to any quantum many-body system with a well-defined classical limit.
arXiv Detail & Related papers (2020-07-31T14:03:37Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.