論文の概要: Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
Viewpoint
- arxiv url: http://arxiv.org/abs/2109.11375v1
- Date: Thu, 23 Sep 2021 13:44:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 14:47:43.377839
- Title: Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
Viewpoint
- Title(参考訳): 逆問題に対する確率正規化フロー:マルコフチェイン視点
- Authors: Paul Hagemann, Johannes Hertrich, Gabriele Steidl
- Abstract要約: マルコフ連鎖の観点からのフローの正規化を考える。
遷移密度を一般マルコフ核に置き換え、ラドン-ニコディム微分による証明を確立する。
提案した条件付き正規化フローの性能を数値例で示す。
- 参考スコア(独自算出の注目度): 0.45119235878273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To overcome topological constraints and improve the expressiveness of
normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic
normalizing flows which combine deterministic, learnable flow transformations
with stochastic sampling methods. In this paper, we consider stochastic
normalizing flows from a Markov chain point of view. In particular, we replace
transition densities by general Markov kernels and establish proofs via
Radon-Nikodym derivatives which allows to incorporate distributions without
densities in a sound way. Further, we generalize the results for sampling from
posterior distributions as required in inverse problems. The performance of the
proposed conditional stochastic normalizing flow is demonstrated by numerical
examples.
- Abstract(参考訳): 位相的制約を克服し、フローアーキテクチャの正規化の表現性を向上させるため、wu, k\"ohler, no\'e は決定論的で学習可能なフロー変換と確率的サンプリング法を組み合わせた確率的正規化フローを導入した。
本稿では,マルコフ連鎖の観点からの確率正規化の流れを考える。
特に、遷移密度を一般マルコフカーネルに置き換え、Radon-Nikodym微分を通じて証明を確立することで、密度のない分布を健全な方法で組み込むことができる。
さらに,逆問題において必要となる後方分布からのサンプリング結果を一般化する。
提案する条件付き確率正規化流の性能を数値例で示す。
関連論文リスト
- Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Detecting and Mitigating Mode-Collapse for Flow-based Sampling of
Lattice Field Theories [6.222204646855336]
格子場理論の文脈における正規化流れのモード崩壊の結果について検討する。
本稿では,モード崩壊の度合いを定量化し,その結果の偏りを導出する指標を提案する。
論文 参考訳(メタデータ) (2023-02-27T19:00:22Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Resampling Base Distributions of Normalizing Flows [0.0]
学習された拒絶サンプリングに基づいて,フローを正規化するためのベース分布を導入する。
ログライクリフの最大化と逆Kulback-Leibler分散の最適化の両方を用いて、適切な学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-10-29T14:44:44Z) - Invertible Flow Non Equilibrium sampling [10.068677972360318]
逆流非平衡サンプリング(InFine)
InFine は期待値、特に定数の正規化の偏りのない推定器を構成する。
Evidence Lower Bound (ELBO) を構築するために使用でき、新しい変分オートエンコーダ (VAE) クラスにつながります。
論文 参考訳(メタデータ) (2021-03-17T09:09:06Z) - Integrable Nonparametric Flows [5.9774834479750805]
本稿では,無限小変化のみを仮定した無限小正規化フローを確率分布に再構成する手法を提案する。
これは、フローの正規化という従来のタスクを逆転させる。
量子モンテカルロ問題と機械学習の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2020-12-03T16:19:52Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flowsは、VAEと正規化フローを含む構成可能な変換のためのモジュラーフレームワークである。
提案手法は,SurVAE フローとして表現できることが示唆された。
論文 参考訳(メタデータ) (2020-07-06T13:13:22Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
本稿では,2つの流れモデルの合成として,対象条件を推定する近似推論フレームワークを提案する。
本手法は,様々な逆問題に対して評価し,不確実性のある高品質な試料を作製することを示した。
論文 参考訳(メタデータ) (2020-02-26T19:01:11Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z) - Stochastic Normalizing Flows [2.323220706791067]
単純な事前分布の変換を学習するために,フローの正規化が有効であることを示す。
サンプルとフローパラメータの両方をエンドツーエンドに最適化できる効率的なトレーニング手順を導出する。
いくつかのベンチマークでSNFの表現力,サンプリング効率,正当性について述べる。
論文 参考訳(メタデータ) (2020-02-16T23:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。