論文の概要: wsGAT: Weighted and Signed Graph Attention Networks for Link Prediction
- arxiv url: http://arxiv.org/abs/2109.11519v1
- Date: Tue, 21 Sep 2021 12:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 14:44:54.355608
- Title: wsGAT: Weighted and Signed Graph Attention Networks for Link Prediction
- Title(参考訳): wsGAT: リンク予測のための重み付き署名付きグラフ注意ネットワーク
- Authors: Marco Grassia, Giuseppe Mangioni
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフの表現を学習し、現実世界の多くの問題に取り組むために広く利用されている。
我々は,グラフアテンションネットワーク(GAT)層の拡張であるwsGATを提案し,符号付きおよび重み付きリンクでグラフを処理する。
以上の結果から,wsGAT層を用いたモデルはGCNII層やSGCN層よりも優れており,符号付き重みが予測されると性能が低下しないことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been widely used to learn representations
on graphs and tackle many real-world problems from a wide range of domains. In
this paper we propose wsGAT, an extension of the Graph Attention Network (GAT)
layers, meant to address the lack of GNNs that can handle graphs with signed
and weighted links, which are ubiquitous, for instance, in trust and
correlation networks. We first evaluate the performance of our proposal by
comparing against GCNII in the weighed link prediction task, and against SGCN
in the link sign prediction task. After that, we combine the two tasks and show
their performance on predicting the signed weight of links, and their
existence. Our results on real-world networks show that models with wsGAT
layers outperform the ones with GCNII and SGCN layers, and that there is no
loss in performance when signed weights are predicted.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、グラフの表現を学習し、様々な領域から現実世界の問題に取り組むために広く使われている。
本稿では,グラフアテンションネットワーク(GAT)層の拡張であるwsGATを提案する。信頼ネットワークや相関ネットワークなどのユビキタスな,符号付きおよび重み付きリンクでグラフを処理できるGNNの欠如に対処する。
まず,重み付きリンク予測タスクにおけるGCNIIとリンクサイン予測タスクにおけるSGCNを比較し,提案手法の性能を評価する。
その後、これらの2つのタスクを組み合わせて、リンクの符号付き重みとその存在を予測するパフォーマンスを示す。
実世界のネットワークでは,wsGAT層を用いたモデルの方がGCNII層やSGCN層よりも優れており,符号付き重みが予測されると性能が損なわれることはない。
関連論文リスト
- DropEdge not Foolproof: Effective Augmentation Method for Signed Graph Neural Networks [11.809853547011704]
本論文では, 有意または負の符号でマークされたエッジを用いて, 親和性や敵意関係をモデル化した有意グラフについて論じる。
著者らはこれらの問題に対処するためにデータ拡張(DA)技術を提案する。
彼らはSigned Graph Augmentation (SGA)フレームワークを紹介した。
論文 参考訳(メタデータ) (2024-09-29T09:13:23Z) - Graph Contrastive Learning with Generative Adversarial Network [35.564028359355596]
グラフ生成逆数ネットワーク(GAN)はグラフコントラスト学習(GCL)のためのビューの分布を学習する
本稿では,グラフ表現学習のためのジェネレーティブ・コントラスト学習ネットワークであるGACNを提案する。
GACNはGCLの高品質な拡張ビューを生成することができ、12の最先端のベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-01T13:28:24Z) - Learnable Graph Convolutional Attention Networks [7.465923786151107]
グラフニューラルネットワーク(GNN)は、ノード間のメッセージ交換を、隣接するすべてのノードの特徴を均一に(関連する)集約するか、あるいは特徴に一様でないスコア(動作)を適用することによって計算する。
最近の研究は、それぞれGCNとGATのGNNアーキテクチャの長所と短所を示している。
本稿では、注目スコアを計算するために、畳み込みに依存するグラフ畳み込みアテンション層(CAT)を紹介する。
以上の結果から,L-CATはネットワーク上の異なるGNN層を効率よく結合し,競合する手法よりも広い範囲で優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-11-21T21:08:58Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
グラフニューラルネットワーク(GNN)は、ノード分類タスクにおける芸術的パフォーマンスの現在の状態を提供するディープラーニング手法である。
本論文では,GATを位置埋め込みで強化するフレームワークであるG Graph Attentional Networks with Positional Embeddings(GAT-POS)を提案する。
GAT-POSは、強いGNNベースラインや、非ホモフィルグラフ上の最近の構造埋め込み強化GNNと比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-05-09T22:13:46Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
リンク予測のための異なるデータセット上で,既存のグラフニューラルネットワーク(GNN)モデルをベンチマークする。
実験により,これらのGNNアーキテクチャは,リンク予測タスクの様々なベンチマークでも同様に動作することを示す。
論文 参考訳(メタデータ) (2021-02-24T20:57:16Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Signed Graph Diffusion Network [17.20546861491478]
サイン付きソーシャルグラフが与えられたら、適切なノード表現を学習して、エッジの欠落の兆候を推測するにはどうすればよいのか?
署名ソーシャルグラフにおけるリンクサイン予測のためのエンドツーエンドノード表現学習を実現する新しいグラフニューラルネットワークであるSigned Graph Diffusion Network(SGDNet)を提案する。
論文 参考訳(メタデータ) (2020-12-28T11:08:30Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。