Document Automation Architectures and Technologies: A Survey
- URL: http://arxiv.org/abs/2109.11603v1
- Date: Thu, 23 Sep 2021 19:12:26 GMT
- Title: Document Automation Architectures and Technologies: A Survey
- Authors: Mohammad Ahmadi Achachlouei, Omkar Patil, Tarun Joshi, Vijayan N. Nair
- Abstract summary: This paper surveys the current state of the art in document automation (DA)
The objective of DA is to reduce the manual effort during the generation of documents by automatically integrating input from different sources and assembling documents conforming to defined templates.
There have been reviews of commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive review of the academic research on DA architectures and technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys the current state of the art in document automation (DA).
The objective of DA is to reduce the manual effort during the generation of
documents by automatically integrating input from different sources and
assembling documents conforming to defined templates. There have been reviews
of commercial solutions of DA, particularly in the legal domain, but to date
there has been no comprehensive review of the academic research on DA
architectures and technologies. The current survey of DA reviews the academic
literature and provides a clearer definition and characterization of DA and its
features, identifies state-of-the-art DA architectures and technologies in
academic research, and provides ideas that can lead to new research
opportunities within the DA field in light of recent advances in artificial
intelligence and deep neural networks.
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Document Automation Architectures: Updated Survey in Light of Large
Language Models [2.990411348977783]
This paper surveys the current state of the art in document automation (DA)
The objective of DA is to reduce the manual effort during the generation of documents by automatically creating and integrating input from different sources and assembling documents conforming to defined templates.
There have been reviews of commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive review of the academic research on DA architectures and technologies.
arXiv Detail & Related papers (2023-08-18T06:59:55Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Deep learning for table detection and structure recognition: A survey [49.09628624903334]
The goal of this survey is to provide a profound comprehension of the major developments in the field of Table Detection.
We provide an analysis of both classic and new applications in the field.
The datasets and source code of the existing models are organized to provide the reader with a compass on this vast literature.
arXiv Detail & Related papers (2022-11-15T19:42:27Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
The aim of this study is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries.
Data was collected from Web of Science, Scopus, LISA and LISTA databases.
Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works.
arXiv Detail & Related papers (2021-12-06T07:33:09Z) - Document AI: Benchmarks, Models and Applications [35.46858492311289]
Document AI refers to the techniques for automatically reading, understanding, and analyzing business documents.
In recent years, the popularity of deep learning technology has greatly advanced the development of Document AI.
This paper briefly reviews some of the representative models, tasks, and benchmark datasets.
arXiv Detail & Related papers (2021-11-16T16:43:07Z) - Data-Driven Design-by-Analogy: State of the Art and Future Directions [11.025196033751786]
Design-by- Analogy (DbA) is a design methodology wherein new solutions, opportunities or designs are generated in a target domain based on inspiration drawn from a source domain.
Recently, the increasingly available design databases and rapidly advancing data science and artificial intelligence technologies have presented new opportunities for developing data-driven methods and tools for DbA support.
arXiv Detail & Related papers (2021-06-03T04:35:34Z) - A Survey of Deep Learning Approaches for OCR and Document Understanding [68.65995739708525]
We review different techniques for document understanding for documents written in English.
We consolidate methodologies present in literature to act as a jumping-off point for researchers exploring this area.
arXiv Detail & Related papers (2020-11-27T03:05:59Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL)
This paper presents a systematic literature review of research at the intersection of SE & DL.
We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques to a given problem domain.
arXiv Detail & Related papers (2020-09-14T15:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.