Data-Driven Design-by-Analogy: State of the Art and Future Directions
- URL: http://arxiv.org/abs/2106.01592v1
- Date: Thu, 3 Jun 2021 04:35:34 GMT
- Title: Data-Driven Design-by-Analogy: State of the Art and Future Directions
- Authors: Shuo Jiang, Jie Hu, Kristin L. Wood, Jianxi Luo
- Abstract summary: Design-by- Analogy (DbA) is a design methodology wherein new solutions, opportunities or designs are generated in a target domain based on inspiration drawn from a source domain.
Recently, the increasingly available design databases and rapidly advancing data science and artificial intelligence technologies have presented new opportunities for developing data-driven methods and tools for DbA support.
- Score: 11.025196033751786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Design-by-Analogy (DbA) is a design methodology wherein new solutions,
opportunities or designs are generated in a target domain based on inspiration
drawn from a source domain; it can benefit designers in mitigating design
fixation and improving design ideation outcomes. Recently, the increasingly
available design databases and rapidly advancing data science and artificial
intelligence technologies have presented new opportunities for developing
data-driven methods and tools for DbA support. In this study, we survey
existing data-driven DbA studies and categorize individual studies according to
the data, methods, and applications in four categories, namely, analogy
encoding, retrieval, mapping, and evaluation. Based on both nuanced organic
review and structured analysis, this paper elucidates the state of the art of
data-driven DbA research to date and benchmarks it with the frontier of data
science and AI research to identify promising research opportunities and
directions for the field. Finally, we propose a future conceptual data-driven
DbA system that integrates all propositions.
Related papers
- Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Redefining Data-Centric Design: A New Approach with a Domain Model and Core Data Ontology for Computational Systems [2.872069347343959]
This paper presents an innovative data-centric paradigm for designing computational systems by introducing a new informatics domain model.
The proposed model moves away from the conventional node-centric framework and focuses on data-centric categorization, using a multimodal approach that incorporates objects, events, concepts, and actions.
arXiv Detail & Related papers (2024-09-01T22:34:12Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - Document Automation Architectures: Updated Survey in Light of Large
Language Models [2.990411348977783]
This paper surveys the current state of the art in document automation (DA)
The objective of DA is to reduce the manual effort during the generation of documents by automatically creating and integrating input from different sources and assembling documents conforming to defined templates.
There have been reviews of commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive review of the academic research on DA architectures and technologies.
arXiv Detail & Related papers (2023-08-18T06:59:55Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Document Automation Architectures and Technologies: A Survey [0.0]
This paper surveys the current state of the art in document automation (DA)
The objective of DA is to reduce the manual effort during the generation of documents by automatically integrating input from different sources and assembling documents conforming to defined templates.
There have been reviews of commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive review of the academic research on DA architectures and technologies.
arXiv Detail & Related papers (2021-09-23T19:12:26Z) - Data Science Methodologies: Current Challenges and Future Approaches [0.0]
Lack of vision and clear objectives, a biased emphasis on technical issues, a low level of maturity for ad-hoc projects are among these challenges.
Few methodologies offer a complete guideline across team, project and data & information management.
We propose a conceptual framework containing general characteristics that a methodology for managing data science projects with a holistic point of view should have.
arXiv Detail & Related papers (2021-06-14T10:34:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.