Optimization Strategies in Multi-Task Learning: Averaged or Independent
Losses?
- URL: http://arxiv.org/abs/2109.11678v2
- Date: Mon, 4 Oct 2021 15:37:46 GMT
- Title: Optimization Strategies in Multi-Task Learning: Averaged or Independent
Losses?
- Authors: Lucas Pascal and Pietro Michiardi and Xavier Bost and Benoit Huet and
Maria A. Zuluaga
- Abstract summary: In Multi-Task Learning (MTL), it is a common practice to train multi-task networks by optimizing an objective function, which is a weighted average of the task-specific objective functions.
In this work, we investigate the benefits of such an alternative, by alternating independent gradient descent steps on the different task-specific objective functions.
We show that our random grouping strategy allows to trade-off between these benefits and computational efficiency.
- Score: 15.905060482249873
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In Multi-Task Learning (MTL), it is a common practice to train multi-task
networks by optimizing an objective function, which is a weighted average of
the task-specific objective functions. Although the computational advantages of
this strategy are clear, the complexity of the resulting loss landscape has not
been studied in the literature. Arguably, its optimization may be more
difficult than a separate optimization of the constituting task-specific
objectives. In this work, we investigate the benefits of such an alternative,
by alternating independent gradient descent steps on the different
task-specific objective functions and we formulate a novel way to combine this
approach with state-of-the-art optimizers. As the separation of task-specific
objectives comes at the cost of increased computational time, we propose a
random task grouping as a trade-off between better optimization and
computational efficiency. Experimental results over three well-known visual MTL
datasets show better overall absolute performance on losses and standard
metrics compared to an averaged objective function and other state-of-the-art
MTL methods. In particular, our method shows the most benefits when dealing
with tasks of different nature and it enables a wider exploration of the shared
parameter space. We also show that our random grouping strategy allows to
trade-off between these benefits and computational efficiency.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
We propose a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency.
We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks.
arXiv Detail & Related papers (2024-02-26T18:59:52Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - Multi-Task Learning on Networks [0.0]
Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods.
In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations.
In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function.
arXiv Detail & Related papers (2021-12-07T09:13:10Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
Multi-task learning (MTL) is a subfield of machine learning with important applications.
The best MTL optimization methods require individually computing the gradient of each task's loss function.
We propose Scaled Loss Approximate Weighting (SLAW), a method for multi-task optimization that matches the performance of the best existing methods while being much more efficient.
arXiv Detail & Related papers (2021-09-16T20:58:40Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.