Parent Hamiltonian as a benchmark problem for variational quantum
eigensolvers
- URL: http://arxiv.org/abs/2109.11759v2
- Date: Wed, 11 May 2022 04:07:14 GMT
- Title: Parent Hamiltonian as a benchmark problem for variational quantum
eigensolvers
- Authors: Fumiyoshi Kobayashi, Kosuke Mitarai, Keisuke Fujii
- Abstract summary: Variational quantum eigensolver (VQE) finds a ground state of a given Hamiltonian by variationally optimizing the parameters of quantum circuits called ansatz.
This work provides a systematic way to analyze energies for VQE and contribute to the design of ansatz and its initial parameters.
- Score: 0.6946929968559495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum eigensolver (VQE), which attracts attention as a
promising application of noisy intermediate-scale quantum devices, finds a
ground state of a given Hamiltonian by variationally optimizing the parameters
of quantum circuits called ansatz. Since the difficulty of the optimization
depends on the complexity of the problem Hamiltonian and the structure of the
ansatz, it has been difficult to analyze the performance of optimizers for the
VQE systematically. To resolve this problem, we propose a technique to
construct a benchmark problem whose ground state is guaranteed to be achievable
with a given ansatz by using the idea of parent Hamiltonian of low-depth
parameterized quantum circuits. We compare the convergence of several
optimizers by varying the distance of the initial parameters from the solution
and find that the converged energies showed a threshold-like behavior depending
on the distance. This work provides a systematic way to analyze optimizers for
VQE and contribute to the design of ansatz and its initial parameters.
Related papers
- Quantum Boltzmann machine learning of ground-state energies [3.187381965457262]
Esting the ground-state energy of Hamiltonians is a fundamental task for which quantum computers can be helpful.
We analyze the performance of quantum Boltzmann machines for this task.
Our algorithm estimates the gradient of the energy function efficiently by means of a novel quantum circuit construction.
arXiv Detail & Related papers (2024-10-16T18:22:03Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - A Convergence Theory for Over-parameterized Variational Quantum
Eigensolvers [21.72347971869391]
The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers.
We provide the first rigorous analysis of the convergence of VQEs in the over- parameterization regime.
arXiv Detail & Related papers (2022-05-25T04:06:50Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Improving the variational quantum eigensolver using variational
adiabatic quantum computing [0.0]
variational quantumsampling (VAQC) is a hybrid quantum-classical algorithm for finding a Hamiltonian minimum eigenvalue of a quantum circuit.
We show that VAQC can provide more accurate solutions than "plain" VQE, for the evaluation.
arXiv Detail & Related papers (2021-02-04T20:25:50Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.