A Convergence Theory for Over-parameterized Variational Quantum
Eigensolvers
- URL: http://arxiv.org/abs/2205.12481v1
- Date: Wed, 25 May 2022 04:06:50 GMT
- Title: A Convergence Theory for Over-parameterized Variational Quantum
Eigensolvers
- Authors: Xuchen You and Shouvanik Chakrabarti and Xiaodi Wu
- Abstract summary: The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers.
We provide the first rigorous analysis of the convergence of VQEs in the over- parameterization regime.
- Score: 21.72347971869391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Variational Quantum Eigensolver (VQE) is a promising candidate for
quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ)
computers. Despite a lot of empirical studies and recent progress in
theoretical understanding of VQE's optimization landscape, the convergence for
optimizing VQE is far less understood. We provide the first rigorous analysis
of the convergence of VQEs in the over-parameterization regime. By connecting
the training dynamics with the Riemannian Gradient Flow on the unit-sphere, we
establish a threshold on the sufficient number of parameters for efficient
convergence, which depends polynomially on the system dimension and the
spectral ratio, a property of the problem Hamiltonian, and could be resilient
to gradient noise to some extent. We further illustrate that this
overparameterization threshold could be vastly reduced for specific VQE
instances by establishing an ansatz-dependent threshold paralleling our main
result. We showcase that our ansatz-dependent threshold could serve as a proxy
of the trainability of different VQE ansatzes without performing empirical
experiments, which hence leads to a principled way of evaluating ansatz design.
Finally, we conclude with a comprehensive empirical study that supports our
theoretical findings.
Related papers
- Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Parent Hamiltonian as a benchmark problem for variational quantum
eigensolvers [0.6946929968559495]
Variational quantum eigensolver (VQE) finds a ground state of a given Hamiltonian by variationally optimizing the parameters of quantum circuits called ansatz.
This work provides a systematic way to analyze energies for VQE and contribute to the design of ansatz and its initial parameters.
arXiv Detail & Related papers (2021-09-24T06:09:10Z) - Efficient measure for the expressivity of variational quantum algorithms [72.59790225766777]
We exploit an advanced tool in statistical learning theory, i.e., covering number, to study the expressivity of variational quantum algorithms.
We first exhibit how the expressivity of VQAs with an arbitrary ansatze is upper bounded by the number of quantum gates and the measurement observable.
We then explore the expressivity of VQAs on near-term quantum chips, where the system noise is considered.
arXiv Detail & Related papers (2021-04-20T13:51:08Z) - Layer VQE: A Variational Approach for Combinatorial Optimization on
Noisy Quantum Computers [5.644434841659249]
We propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE)
We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches.
Our simulation results show that L-VQE performs well under realistic hardware noise.
arXiv Detail & Related papers (2021-02-10T16:53:22Z) - Improving the variational quantum eigensolver using variational
adiabatic quantum computing [0.0]
variational quantumsampling (VAQC) is a hybrid quantum-classical algorithm for finding a Hamiltonian minimum eigenvalue of a quantum circuit.
We show that VAQC can provide more accurate solutions than "plain" VQE, for the evaluation.
arXiv Detail & Related papers (2021-02-04T20:25:50Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
We study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN)
We employ a statistical and differential geometric approach to study the learning theory of QNN.
arXiv Detail & Related papers (2020-11-16T10:41:47Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
This paper analyzes a class of momentum-based Q-learning algorithms with finite-sample guarantee.
We establish the convergence guarantee for MomentumQ with linear function approximations and Markovian sampling.
We demonstrate through various experiments that the proposed MomentumQ outperforms other momentum-based Q-learning algorithms.
arXiv Detail & Related papers (2020-07-30T12:27:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.