論文の概要: Sinkhorn Distributionally Robust Optimization
- arxiv url: http://arxiv.org/abs/2109.11926v1
- Date: Fri, 24 Sep 2021 12:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-27 14:19:51.927479
- Title: Sinkhorn Distributionally Robust Optimization
- Title(参考訳): シンクホーン分布ロバスト最適化
- Authors: Jie Wang, Rui Gao, Yao Xie
- Abstract要約: シンコルン距離(Sinkorn distance)は、エントロピー正則化に基づくワッサーシュタイン距離の変種である。
我々は、名目分布が経験分布であり、一般分布であるときに、凸プログラミングの二重再構成を導出する。
- 参考スコア(独自算出の注目度): 16.76361726800435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study distributionally robust optimization with Sinkorn distance -- a
variant of Wasserstein distance based on entropic regularization. We derive
convex programming dual reformulations when the nominal distribution is an
empirical distribution and a general distribution, respectively. Compared with
Wasserstein DRO, it is computationally tractable for a larger class of loss
functions, and its worst-case distribution is more reasonable. To solve the
dual reformulation, we propose an efficient batch gradient descent with a
bisection search algorithm. Finally, we provide various numerical examples
using both synthetic and real data to demonstrate its competitive performance.
- Abstract(参考訳): エントロピー正規化に基づくワッサーシュタイン距離の変種であるシンコルン距離を用いた分布ロバストな最適化について検討する。
我々は,それぞれが経験的分布と一般分布である場合の凸計画二重再構成を導出する。
wasserstein droと比較すると、より大きな損失関数のクラスに対して計算的に扱いやすく、最悪のケース分布の方が妥当である。
そこで我々は,二項探索アルゴリズムを用いた効率的なバッチ勾配降下法を提案する。
最後に、合成データと実データの両方を用いて、その競合性能を示す様々な数値例を示す。
関連論文リスト
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - A Primal-Dual Algorithm for Faster Distributionally Robust Optimization [12.311794669976047]
本稿では,Dragoについて述べる。Dragoは,DRO問題に対して,最先端の線形収束率を実現するアルゴリズムである。
分類と回帰の数値的なベンチマークで理論的結果を支持する。
論文 参考訳(メタデータ) (2024-03-16T02:06:14Z) - Diffusion Stochastic Optimization for Min-Max Problems [33.73046548872663]
楽観的勾配法はミニマックス最適化問題に対処するのに有用である。
従来のバージョンでは大きなバッチサイズが必要であり,Samevareps-generativeOGOGと呼ばれる新しい定式化を導入,解析する。
論文 参考訳(メタデータ) (2024-01-26T01:16:59Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
以前の研究は、一階法はより良い収束率(漸進収束率)をトレードオフする必要があることを示唆している。
最適複雑性と準最適収束保証の両方を、滑らかな凸最小化と滑らかな凸最小化問題に対して達成できることを実証する。
論文 参考訳(メタデータ) (2023-10-26T19:56:52Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Smoothed $f$-Divergence Distributionally Robust Optimization [5.50764401597583]
我々は、特別な種類の分布完全ロバスト最適化(DRO)の定式化が理論的優位性をもたらすと論じる。
DROは、Wasserstein または L'evy-Prokhorov (LP) 距離で滑らかなKullback Leibler (KL) の発散に基づく曖昧性集合を用いる。
論文 参考訳(メタデータ) (2023-06-24T19:22:01Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Stochastic Constrained DRO with a Complexity Independent of Sample Size [38.56406595022129]
クルバック分散制約DRO問題の解法として,非凸損失と凸損失の両方に適用可能なアルゴリズムを提案し,解析する。
非損失に対する$$$ilon定常解を見つけるのにほぼ最適な複雑さを確立し、広いアプリケーションに最適な解を求めるのに最適なバッチの複雑さを確立します。
論文 参考訳(メタデータ) (2022-10-11T19:11:19Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。