論文の概要: Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints
- arxiv url: http://arxiv.org/abs/2408.15015v1
- Date: Tue, 27 Aug 2024 12:50:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:53:43.190780
- Title: Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints
- Title(参考訳): $f$-divergence Perception Constraint を用いた速度歪み知覚関数の交換最小化方式
- Authors: Giuseppe Serra, Photios A. Stavrou, Marios Kountouris,
- Abstract要約: 離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
- 参考スコア(独自算出の注目度): 10.564071872770146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint that belongs to the family of $f$-divergences. In this setting, the RDPF forms a convex programming problem for which we characterize the optimal parametric solutions. We employ the developed solutions in an alternating minimization scheme, namely Optimal Alternating Minimization (OAM), for which we provide convergence guarantees. Nevertheless, the OAM scheme does not lead to a direct implementation of a generalized Blahut-Arimoto (BA) type of algorithm due to the presence of implicit equations in the structure of the iteration. To overcome this difficulty, we propose two alternative minimization approaches whose applicability depends on the smoothness of the used perception metric: a Newton-based Alternating Minimization (NAM) scheme, relying on Newton's root-finding method for the approximation of the optimal iteration solution, and a Relaxed Alternating Minimization (RAM) scheme, based on a relaxation of the OAM iterates. Both schemes are shown, via the derivation of necessary and sufficient conditions, to guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and the perception constraints which guarantee that the proposed algorithms converge exponentially fast in the number of iteration steps. We corroborate our theoretical results with numerical simulations and draw connections with existing results.
- Abstract(参考訳): 本研究では,1文字平均歪み制約および$f$-divergencesファミリーに属する知覚制約を受ける離散メモリレスソースに対するレート歪み知覚関数(RDPF)の計算について検討する。
この設定では、RDPFは、最適パラメトリック解を特徴づける凸プログラミング問題を形成する。
我々は, 収束保証を提供する最適交換最小化(OAM)の交互最小化方式において, 開発した解を用いている。
それでも、OAMスキームは、反復構造に暗黙の方程式が存在するため、一般化されたブラフト・アリモト型アルゴリズム(BA)の直接的な実装には至らない。
この難しさを克服するために、Newton-based Alternating Minimization (NAM)スキームと、OAMイテレートの緩和に基づくRelaxed Alternating Minimization (RAM)スキームの2つの代替最小化手法を提案する。
どちらのスキームも、大域的最適解への収束を保証するために必要かつ十分な条件の導出によって示される。
また、提案アルゴリズムが繰り返しステップの数で指数関数的に高速に収束することを保証し、歪みと知覚制約について十分な条件を提供する。
理論的結果を数値シミュレーションで相関させ,既存の結果と接続する。
関連論文リスト
- A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-block Nonconvex and Nonsmooth Optimization [4.975853671529418]
本研究では,学習可能な2ブロック非平滑問題の解法として,一般学習型交互最小化アルゴリズムLPAMを提案する。
提案するLPAM-netはパラメータ効率が高く,いくつかの最先端手法と比較して良好な性能を示す。
論文 参考訳(メタデータ) (2024-11-10T02:02:32Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - From Inverse Optimization to Feasibility to ERM [11.731853838892487]
パラメータの予測に付加的なコンテキスト情報を利用するコンテキスト逆設定について検討する。
合成および実世界の問題に対する我々のアプローチを実験的に検証し,既存手法と比較して性能が向上したことを示す。
論文 参考訳(メタデータ) (2024-02-27T21:06:42Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Sparse Signal Reconstruction for Nonlinear Models via Piecewise Rational
Optimization [27.080837460030583]
劣化した信号を非線形歪みと限られたサンプリングレートで再構成する手法を提案する。
本手法は,不正確な適合項と罰則として定式化する。
シミュレーションの利点の観点から,この問題の活用方法を示す。
論文 参考訳(メタデータ) (2020-10-29T09:05:19Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。