Learning Relative Interactions through Imitation
- URL: http://arxiv.org/abs/2109.12013v1
- Date: Fri, 24 Sep 2021 15:18:34 GMT
- Title: Learning Relative Interactions through Imitation
- Authors: Giorgia Adorni and Elia Cereda
- Abstract summary: We show that a simple network, with relatively little training data, is able to reach very good performance on the fixed-pose task.
We also explore the effect of ambiguities in the sensor readings, in particular caused by symmetries in the target object, on the behaviour of the learned controller.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this project we trained a neural network to perform specific interactions
between a robot and objects in the environment, through imitation learning. In
particular, we tackle the task of moving the robot to a fixed pose with respect
to a certain object and later extend our method to handle any arbitrary pose
around this object. We show that a simple network, with relatively little
training data, is able to reach very good performance on the fixed-pose task,
while more work is needed to perform the arbitrary-pose task satisfactorily. We
also explore the effect of ambiguities in the sensor readings, in particular
caused by symmetries in the target object, on the behaviour of the learned
controller.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Latent Object Characteristics Recognition with Visual to Haptic-Audio Cross-modal Transfer Learning [9.178588671620963]
This work aims to recognise the latent unobservable object characteristics.
vision is commonly used for object recognition by robots, but it is ineffective for detecting hidden objects.
We propose a cross-modal transfer learning approach from vision to haptic-audio.
arXiv Detail & Related papers (2024-03-15T21:18:14Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Few-Shot In-Context Imitation Learning via Implicit Graph Alignment [15.215659641228655]
We formulate imitation learning as a conditional alignment problem between graph representations of objects.
We show that this conditioning allows for in-context learning, where a robot can perform a task on a set of new objects immediately after the demonstrations.
arXiv Detail & Related papers (2023-10-18T18:26:01Z) - Learning Sensorimotor Primitives of Sequential Manipulation Tasks from
Visual Demonstrations [13.864448233719598]
This paper describes a new neural network-based framework for learning simultaneously low-level policies and high-level policies.
A key feature of the proposed approach is that the policies are learned directly from raw videos of task demonstrations.
Empirical results on object manipulation tasks with a robotic arm show that the proposed network can efficiently learn from real visual demonstrations to perform the tasks.
arXiv Detail & Related papers (2022-03-08T01:36:48Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATE is a robot system that interacts with human through natural language and grasps a specified object in clutter.
We train separate neural networks for object detection, for visual grounding, for question generation, and for OBR detection and grasping.
We build a partially observable Markov decision process (POMDP) that integrates the learned neural network modules.
arXiv Detail & Related papers (2021-08-25T07:35:21Z) - Object Detection and Pose Estimation from RGB and Depth Data for
Real-time, Adaptive Robotic Grasping [0.0]
We propose a system that performs real-time object detection and pose estimation, for the purpose of dynamic robot grasping.
The proposed approach allows the robot to detect the object identity and its actual pose, and then adapt a canonical grasp in order to be used with the new pose.
For training, the system defines a canonical grasp by capturing the relative pose of an object with respect to the gripper attached to the robot's wrist.
During testing, once a new pose is detected, a canonical grasp for the object is identified and then dynamically adapted by adjusting the robot arm's joint angles.
arXiv Detail & Related papers (2021-01-18T22:22:47Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
First-person object-interaction tasks in high-fidelity, 3D, simulated environments such as the AI2Thor pose significant sample-efficiency challenges for reinforcement learning agents.
We show that one can learn object-interaction tasks from scratch without supervision by learning an attentive object-model as an auxiliary task.
arXiv Detail & Related papers (2020-10-28T19:27:26Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
We present a deep learning network that learns dependencies and transitions across subtasks solely from a set of demonstration videos.
We show that these symbols can be learned and predicted directly from image observations.
We evaluate our framework on two long horizon tasks: (1) block stacking of puzzle pieces being executed by humans, and (2) a robot manipulation task involving pick and place of objects and sliding a cabinet door with a 7-DoF robot arm.
arXiv Detail & Related papers (2020-06-08T18:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.