Description-based Label Attention Classifier for Explainable ICD-9
Classification
- URL: http://arxiv.org/abs/2109.12026v1
- Date: Fri, 24 Sep 2021 15:31:38 GMT
- Title: Description-based Label Attention Classifier for Explainable ICD-9
Classification
- Authors: Malte Feucht, Zhiliang Wu, Sophia Althammer, Volker Tresp
- Abstract summary: We propose a description-based label attention classifier to improve the model explainability when dealing with noisy texts like clinical notes.
We evaluate our proposed method with different transformer-based encoders on the MIMIC-III-50 dataset.
- Score: 10.407041139832955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ICD-9 coding is a relevant clinical billing task, where unstructured texts
with information about a patient's diagnosis and treatments are annotated with
multiple ICD-9 codes. Automated ICD-9 coding is an active research field, where
CNN- and RNN-based model architectures represent the state-of-the-art
approaches. In this work, we propose a description-based label attention
classifier to improve the model explainability when dealing with noisy texts
like clinical notes. We evaluate our proposed method with different
transformer-based encoders on the MIMIC-III-50 dataset. Our method achieves
strong results together with augmented explainablilty.
Related papers
- Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
We propose a novel approach for ICD indexing that adopts three ideas.
We use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes.
We formalize the task of ICD classification with auxiliary knowledge of the medical records.
arXiv Detail & Related papers (2024-05-29T13:44:07Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Accurate and Well-Calibrated ICD Code Assignment Through Attention Over
Diverse Label Embeddings [1.201425717264024]
Manual assigning ICD codes to clinical text is time-consuming, error-prone, and expensive.
This paper describes a novel approach for automated ICD coding, combining several ideas from previous related work.
Experiments with different splits of the MIMIC-III dataset show that the proposed approach outperforms the current state-of-the-art models in ICD coding.
arXiv Detail & Related papers (2024-02-05T16:40:23Z) - Towards Semi-Structured Automatic ICD Coding via Tree-based Contrastive
Learning [18.380293890624102]
We investigate the semi-structured nature of clinical notes and propose an automatic algorithm to segment them into sections.
To address the variability issues in existing ICD coding models with limited data, we introduce a contrastive pre-training approach on sections.
arXiv Detail & Related papers (2023-10-14T22:07:13Z) - CoPHE: A Count-Preserving Hierarchical Evaluation Metric in Large-Scale
Multi-Label Text Classification [70.554573538777]
We argue for hierarchical evaluation of the predictions of neural LMTC models.
We describe a structural issue in the representation of the structured label space in prior art.
We propose a set of metrics for hierarchical evaluation using the depth-based representation.
arXiv Detail & Related papers (2021-09-10T13:09:12Z) - Active learning for medical code assignment [55.99831806138029]
We demonstrate the effectiveness of Active Learning (AL) in multi-label text classification in the clinical domain.
We apply a set of well-known AL methods to help automatically assign ICD-9 codes on the MIMIC-III dataset.
Our results show that the selection of informative instances provides satisfactory classification with a significantly reduced training set.
arXiv Detail & Related papers (2021-04-12T18:11:17Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - An Explainable CNN Approach for Medical Codes Prediction from Clinical
Text [1.7746314978241657]
We develop CNN-based methods for automatic ICD coding based on clinical text from intensive care unit (ICU) stays.
We come up with the Shallow and Wide Attention convolutional Mechanism (SWAM), which allows our model to learn local and low-level features for each label.
arXiv Detail & Related papers (2021-01-14T02:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.