論文の概要: ImplicitVol: Sensorless 3D Ultrasound Reconstruction with Deep Implicit
Representation
- arxiv url: http://arxiv.org/abs/2109.12108v1
- Date: Fri, 24 Sep 2021 17:59:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-27 15:13:25.565568
- Title: ImplicitVol: Sensorless 3D Ultrasound Reconstruction with Deep Implicit
Representation
- Title(参考訳): ImplicitVol:深部インプシット表現を用いたセンサレス3次元超音波再構成
- Authors: Pak-Hei Yeung, Linde Hesse, Moska Aliasi, Monique Haak, the
INTERGROWTH-21st Consortium, Weidi Xie, Ana I.L. Namburete
- Abstract要約: 本研究の目的は, 深い暗示表現を持つ2次元自由手超音波画像の集合から, 3次元ボリュームのセンサレス再構成を実現することである。
3次元体積を離散ボクセル格子として表現する従来の方法とは対照的に、連続函数のゼロレベル集合としてパラメータ化することでそうする。
提案モデルでは,インプリシットボル(ImplicitVol)が入力として2Dスキャンと推定位置を3Dで抽出し,推定した3D位置を共同で再現し,3Dボリュームの完全な再構築を学習する。
- 参考スコア(独自算出の注目度): 13.71137201718831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this work is to achieve sensorless reconstruction of a 3D
volume from a set of 2D freehand ultrasound images with deep implicit
representation. In contrast to the conventional way that represents a 3D volume
as a discrete voxel grid, we do so by parameterizing it as the zero level-set
of a continuous function, i.e. implicitly representing the 3D volume as a
mapping from the spatial coordinates to the corresponding intensity values. Our
proposed model, termed as ImplicitVol, takes a set of 2D scans and their
estimated locations in 3D as input, jointly re?fing the estimated 3D locations
and learning a full reconstruction of the 3D volume. When testing on real 2D
ultrasound images, novel cross-sectional views that are sampled from
ImplicitVol show significantly better visual quality than those sampled from
existing reconstruction approaches, outperforming them by over 30% (NCC and
SSIM), between the output and ground-truth on the 3D volume testing data. The
code will be made publicly available.
- Abstract(参考訳): 本研究の目的は,奥深い暗示表現を持つ2次元自由手超音波画像から3次元ボリュームのセンサレス再構成を実現することである。
3dボリュームを離散ボクセルグリッドとして表す従来の方法とは対照的に、これを連続関数のゼロレベル集合、すなわち空間座標から対応する強度値へのマッピングとして暗黙的に3dボリュームを表すことによって、パラメータ化します。
提案手法は,2dスキャンと推定位置を入力として2dスキャンし,相互に再認識する手法である。
推定3D位置をフィッティングし、3Dボリュームの完全な再構築を学習する。
実際の2D超音波画像をテストする場合,ImplicitVolから採取した新しい断面ビューは,既存の再構成手法より視覚的品質が有意に向上し,出力と3Dボリュームテストデータとの接点間において30%以上(NCCおよびSSIM)の画質が向上した。
コードは公開される予定だ。
関連論文リスト
- Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
本稿では,2次元X線と3次元CTライクな再構成が可能な2次元-3次元画像変換法について,簡単な手法で検討する。
我々は,潜伏空間内の複数の2次元ビューにまたがる情報を統合する既存のアプローチが,潜伏符号化中に貴重な信号情報を失うことを観察する。代わりに,2次元ビューを高チャネルの3次元ボリュームに繰り返して,簡単な3次元から3次元生成モデル問題として3次元再構成課題にアプローチする。
この方法では、再構成された3Dボリュームが、2D入力から貴重な情報を保持でき、Swin Uのチャネル状態間で渡される。
論文 参考訳(メタデータ) (2024-06-26T15:18:20Z) - NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields [57.617972778377215]
提案手法は,RGB画像から有効な3D表現を生成する方法を示す。
我々は、この表現を、提案した擬似RGBデータに基づいて、180万枚以上の画像で事前訓練する。
我々は,NeRFの自己教師型プレトレーニングであるNeRF-MAE(NeRF-MAE)を目覚ましいスケールで実施し,様々な3Dタスクの性能向上を実現した。
論文 参考訳(メタデータ) (2024-04-01T17:59:55Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
SSC(Monocular 3D Semantic Scene Completion)は、単一の画像から複雑なセマンティックスや幾何学的形状を予測し、3D入力を必要としないため、近年大きな注目を集めている。
我々は,3次元空間に投影された2次元特徴の特徴的曖昧さ,3次元畳み込みのPose Ambiguity,深さの異なる3次元畳み込みにおける不均衡など,現在の最先端手法におけるいくつかの重要な問題を明らかにする。
シーン補完ネットワーク(NDC-Scene)を考案し,2を直接拡張する。
論文 参考訳(メタデータ) (2023-09-26T02:09:52Z) - MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection [31.58403386994297]
我々は,高密度な3次元形状と占有度を推定できる新しい検出フレームワークMonoNeRDを提案する。
具体的には、SDF(Signed Distance Function)を用いてシーンをモデル化し、密集した3D表現の作成を容易にする。
我々の知る限り、この研究は初めてM3Dのボリュームレンダリングを導入し、画像に基づく3D知覚のための暗黙的な再構築の可能性を示す。
論文 参考訳(メタデータ) (2023-08-18T09:39:52Z) - Neural Voting Field for Camera-Space 3D Hand Pose Estimation [106.34750803910714]
3次元暗黙表現に基づく1枚のRGB画像からカメラ空間の3Dハンドポーズ推定のための統一的なフレームワークを提案する。
本稿では,カメラフラストラムにおける高密度3次元ポイントワイド投票により,カメラ空間の3次元ハンドポーズを推定する,新しい3次元高密度回帰手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T16:51:34Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
1枚のスケッチ画像に基づいて3次元形状を再構成することは、スパースで不規則なスケッチと正規の高密度な3次元形状との間に大きな領域ギャップがあるため困難である。
既存の作品では、3D座標を直接予測するためにスケッチから抽出されたグローバルな特徴を活用しようとするが、通常は入力スケッチに忠実でない細部を失う。
論文 参考訳(メタデータ) (2022-08-14T16:37:51Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
RGB画像の集合からTSDF(truncated signed distance function)を直接回帰することにより,シーンのエンドツーエンドな3D再構成手法を提案する。
2D CNNは、各画像から特徴を独立して抽出し、その特徴をバックプロジェクションし、ボクセルボリュームに蓄積する。
3D CNNは蓄積した特徴を洗練し、TSDF値を予測する。
論文 参考訳(メタデータ) (2020-03-23T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。