Adaptive variational preparation of the Fermi-Hubbard eigenstates
- URL: http://arxiv.org/abs/2109.12126v4
- Date: Wed, 2 Nov 2022 17:33:38 GMT
- Title: Adaptive variational preparation of the Fermi-Hubbard eigenstates
- Authors: Gaurav Gyawali, Michael J. Lawler
- Abstract summary: We prepare highly accurate ground states of the Fermi-Hubbard model for small grids up to 6 sites (12bits)
We show this adaptive method outperforms the non-adaptive counterpart in terms of fewer variational parameters, short gate depth, and scaling with the system size.
We also demonstrate the application of adaptive variational methods by preparing excited states and Green functions using a proposed ADAPT-SSVQE algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Approximating the ground states of strongly interacting electron systems in
quantum chemistry and condensed matter physics is expected to be one of the
earliest applications of quantum computers. In this paper, we prepare highly
accurate ground states of the Fermi-Hubbard model for small grids up to 6 sites
(12 qubits) by using an interpretable, adaptive variational quantum
eigensolver(VQE) called ADAPT-VQE. In contrast with non-adaptive VQE, this
algorithm builds a system-specific ansatz by adding an optimal gate built from
one-body or two-body fermionic operators at each step. We show this adaptive
method outperforms the non-adaptive counterpart in terms of fewer variational
parameters, short gate depth, and scaling with the system size. The fidelity
and energy of the prepared state appear to improve asymptotically with ansatz
depth. We also demonstrate the application of adaptive variational methods by
preparing excited states and Green functions using a proposed ADAPT-SSVQE
algorithm. Lower depth, asymptotic convergence, noise tolerance of a
variational approach, and a highly controllable, system-specific ansatz make
the adaptive variational methods particularly well-suited for NISQ devices.
Related papers
- Designing variational ansatz for quantum-enabled simulation of
non-unitary dynamical evolution -- an excursion into Dicke supperradiance [7.977318221782395]
We employ the unrestricted vectorization variant of AVQD to simulate and benchmark various non-unitarily evolving systems.
We show an efficient decomposition scheme for the ansatz used, which can extend its applications to a wide range of other open quantum system scenarios.
Our successful demonstrations pave the way for utilizing this adaptive variational technique to study complex systems in chemistry and physics.
arXiv Detail & Related papers (2024-03-07T16:57:24Z) - Adaptive projected variational quantum dynamics [0.0]
We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions.
The method is based on the projected Variational Quantum Dynamics (pVQD) algorithm.
We apply the new algorithm to the simulation of driven spin models and fermionic systems.
arXiv Detail & Related papers (2023-07-06T18:00:04Z) - Fermionic Adaptive Sampling Theory for Variational Quantum Eigensolvers [0.0]
ADAPT-VQE suffers from a significant measurement overhead when estimating the importance of operators in the wave function.
We proposeFAST-VQE, a method for selecting operators based on importance metrics solely derived from the populations of Slater determinants in the wave function.
arXiv Detail & Related papers (2023-03-13T18:57:18Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Adaptive variational quantum eigensolvers for highly excited states [4.038971004196936]
Highly excited states of quantum many-body systems are central objects in the study of quantum dynamics and thermalization.
We propose an adaptive variational algorithm, adaptive VQE-X, that self-generates a variational ansatz for arbitrary eigenstates of a many-body Hamiltonian $H$.
arXiv Detail & Related papers (2021-04-26T15:03:51Z) - Unitary Block Optimization for Variational Quantum Algorithms [0.0]
We describe the unitary block optimization scheme (UBOS) and apply it to two variational quantum algorithms.
The goal of VQE is to optimize a classically intractable parameterized quantum wave function to target a physical state of a Hamiltonian.
We additionally describe how UBOS applies to real and imaginary time-evolution.
arXiv Detail & Related papers (2021-02-16T19:00:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.