Unitary Block Optimization for Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2102.08403v1
- Date: Tue, 16 Feb 2021 19:00:05 GMT
- Title: Unitary Block Optimization for Variational Quantum Algorithms
- Authors: Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark
- Abstract summary: We describe the unitary block optimization scheme (UBOS) and apply it to two variational quantum algorithms.
The goal of VQE is to optimize a classically intractable parameterized quantum wave function to target a physical state of a Hamiltonian.
We additionally describe how UBOS applies to real and imaginary time-evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms are a promising hybrid framework for solving
chemistry and physics problems with broad applicability to optimization as
well. They are particularly well suited for noisy intermediate scale quantum
(NISQ) computers. In this paper, we describe the unitary block optimization
scheme (UBOS) and apply it to two variational quantum algorithms: the
variational quantum eigensolver (VQE) and variational time evolution. The goal
of VQE is to optimize a classically intractable parameterized quantum wave
function to target a physical state of a Hamiltonian or solve an optimization
problem. UBOS is an alternative to other VQE optimization schemes with a number
of advantages including fast convergence, less sensitivity to barren plateaus,
the ability to tunnel through some local minima and no hyperparameters to tune.
We additionally describe how UBOS applies to real and imaginary time-evolution
(TUBOS).
Related papers
- Bayesian Optimization Priors for Efficient Variational Quantum Algorithms [0.0]
Quantum computers currently rely on a quantum-classical approach known as Variational Quantum Algorithms (VQAs) to solve problems.
We propose a hybrid framework for basic computational optimization that reduces the number of shots per time is charged.
Using both proposed features, we show that using both proposed features statistically outperforms an implementation within VQAs for simulations.
arXiv Detail & Related papers (2024-06-20T18:00:12Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
We study the entanglement generated during the execution of ADAPT-QAOA.
By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages.
arXiv Detail & Related papers (2022-05-24T18:00:02Z) - Quantum approximate optimization algorithm for qudit systems [0.0]
We discuss the quantum approximate optimization algorithm (QAOA) for qudit systems.
We illustrate how the QAOA can be used to formulate a variety of integer optimization problems.
We present numerical results for a charging optimization problem mapped onto a max-$k$-graph coloring problem.
arXiv Detail & Related papers (2022-04-01T10:37:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
Variational quantum algorithms (VQAs) promise efficient use of near-term quantum computers.
We show how to optimally train a VQA for learning quantum states.
We propose the application of Gaussian kernels for quantum machine learning.
arXiv Detail & Related papers (2021-04-29T17:54:59Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.