論文の概要: Classification of COVID-19 from CXR Images in a 15-class Scenario: an
Attempt to Avoid Bias in the System
- arxiv url: http://arxiv.org/abs/2109.12453v1
- Date: Sat, 25 Sep 2021 22:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 08:04:42.948891
- Title: Classification of COVID-19 from CXR Images in a 15-class Scenario: an
Attempt to Avoid Bias in the System
- Title(参考訳): 15級シナリオにおけるCXR画像からのCOVID-19の分類:システム内のバイアス回避の試み
- Authors: Chinmoy Bose and Anirvan Basu
- Abstract要約: WHOは、新型コロナウイルスによる死者3,698,621人を含む177万件の感染者を報告した。
提案システムは,CXR画像選択技術と深層学習に基づくモデルにより,新型コロナウイルスを含む15の疾患を分類する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As of June 2021, the World Health Organization (WHO) has reported 171.7
million confirmed cases including 3,698,621 deaths from COVID-19. Detecting
COVID-19 and other lung diseases from Chest X-Ray (CXR) images can be very
effective for emergency diagnosis and treatment as CXR is fast and cheap. The
objective of this study is to develop a system capable of detecting COVID-19
along with 14 other lung diseases from CXRs in a fair and unbiased manner. The
proposed system consists of a CXR image selection technique and a deep learning
based model to classify 15 diseases including COVID-19. The proposed CXR
selection technique aims to retain the maximum variation uniformly and
eliminate poor quality CXRs with the goal of reducing the training dataset size
without compromising classifier accuracy. More importantly, it reduces the
often hidden bias and unfairness in decision making. The proposed solution
exhibits a promising COVID-19 detection scheme in a more realistic situation
than most existing studies as it deals with 15 lung diseases together. We hope
the proposed method will have wider adoption in medical image classification
and other related fields.
- Abstract(参考訳): 世界保健機関(WHO)は2021年6月時点で、新型コロナウイルスによる死者3,698,621人を含む171.7万件を報告している。
胸部x線画像からcovid-19やその他の肺疾患を検出することは、cxrが高速で安価であるため、緊急診断や治療に非常に有効である。
本研究の目的は、cxrから他の14の肺疾患と共に、公平かつ偏りのない方法でcovid-19を検出できるシステムを開発することである。
提案システムは,CXR画像選択技術と深層学習に基づくモデルにより,新型コロナウイルスを含む15の疾患を分類する。
提案手法は, 分類精度を損なうことなく, トレーニングデータセットサイズを削減することを目的として, 最大変動を均一に保持し, 品質の低いcxrを除去することを目的としている。
さらに重要なことは、意思決定におけるしばしば隠れた偏見と不公平さを減らすことだ。
このソリューションは、15の肺疾患を一緒に扱うため、既存の研究よりも現実的な状況で有望な新型コロナウイルス検出手法を示している。
提案手法が医用画像分類やその他の関連分野に広く採用されることを願っている。
関連論文リスト
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
RT-PCR検査の補助的スクリーニング戦略としての胸部X線撮影(CXR)の利用が増加している。
CXRイメージングに基づく新型コロナウイルススクリーニングのための多くの視覚知覚モデルが提案されている。
我々は、COVID-19コンピュータビジョン研究を支援するために、CXR画像の大規模なベンチマークデータセットであるCOVIDx CXR-3を紹介する。
論文 参考訳(メタデータ) (2022-06-08T04:39:44Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
新型コロナウイルスは武漢で最初に確認され、急速に世界中に広がった。
最もアクセスしやすい方法はRT-PCRである。
RT-PCRと比較すると,胸部CTと胸部X線像が優れた結果を示した。
DenseNet169はX線画像から特徴を抽出するために使用された。
論文 参考訳(メタデータ) (2021-09-30T16:10:31Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - COVID-19 Infection Localization and Severity Grading from Chest X-ray
Images [3.4546388019336143]
コロナウイルス感染症2019(COVID-19)は、2019年12月に出現して以来、世界中で主要な課題となっている。
我々は、11,956のCOVID-19サンプルを含む33,920のCXRイメージで、最大のベンチマークデータセットを構築しました。
このアプローチは、99%以上の感度と特異性の両方で優れたCOVID-19検出性能を達成しました。
論文 参考訳(メタデータ) (2021-03-14T18:06:06Z) - CovMUNET: A Multiple Loss Approach towards Detection of COVID-19 from
Chest X-ray [0.0]
CovMUNETは、CXR画像から新型コロナウイルスの患者を検出するために、多損失ディープニューラルネットワークアプローチである。
提案したニューラルアーキテクチャは、CXR画像の異常の検出にも成功している。
論文 参考訳(メタデータ) (2020-07-28T15:40:13Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray
Screening [11.250464234368478]
新型コロナウイルス(SARS-CoV-2)肺炎に対する包括的スクリーニングプラットフォームを導入する。
提案するAIベースのシステムは、胸部X線(CXR)画像を利用して、患者が新型コロナウイルス感染症に感染しているかどうかを予測する。
論文 参考訳(メタデータ) (2020-04-24T15:44:51Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
新型コロナウイルスは肺炎に似た呼吸器症候群である。
科学者、研究者、医療専門家は、肺感染症の特定によって、新型コロナウイルスの迅速かつ自動化された診断に貢献している。
本稿では,様々な最先端ディープラーニング手法における非バイアスの微調整学習(トランスファーラーニング)に対するランダムなオーバーサンプリングと重み付きクラス損失関数アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。