論文の概要: LoCo: Low-Bit Communication Adaptor for Large-scale Model Training
- arxiv url: http://arxiv.org/abs/2407.04480v1
- Date: Fri, 5 Jul 2024 13:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:30:37.820988
- Title: LoCo: Low-Bit Communication Adaptor for Large-scale Model Training
- Title(参考訳): LoCo:大規模モデルトレーニングのための低ビット通信アダプタ
- Authors: Xingyu Xie, Zhijie Lin, Kim-Chuan Toh, Pan Zhou,
- Abstract要約: 低ビット通信は、しばしば圧縮情報損失によってトレーニング品質が低下する。
本稿では,ローカルGPUノードを補償するLoCo(Lo-bit Communication Adaptor)を提案する。
実験結果から,Megatron-LMやPyTorchs FSDPといった大規模トレーニングモデルフレームワークの移動により,LoCoは圧縮通信効率を大幅に向上することがわかった。
- 参考スコア(独自算出の注目度): 63.040522637816906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To efficiently train large-scale models, low-bit gradient communication compresses full-precision gradients on local GPU nodes into low-precision ones for higher gradient synchronization efficiency among GPU nodes. However, it often degrades training quality due to compression information loss. To address this, we propose the Low-bit Communication Adaptor (LoCo), which compensates gradients on local GPU nodes before compression, ensuring efficient synchronization without compromising training quality. Specifically, LoCo designs a moving average of historical compensation errors to stably estimate concurrent compression error and then adopts it to compensate for the concurrent gradient compression, yielding a less lossless compression. This mechanism allows it to be compatible with general optimizers like Adam and sharding strategies like FSDP. Theoretical analysis shows that integrating LoCo into full-precision optimizers like Adam and SGD does not impair their convergence speed on nonconvex problems. Experimental results show that across large-scale model training frameworks like Megatron-LM and PyTorch's FSDP, LoCo significantly improves communication efficiency, e.g., improving Adam's training speed by 14% to 40% without performance degradation on large language models like LLAMAs and MoE.
- Abstract(参考訳): 大規模モデルを効率的に訓練するために、低ビット勾配通信は、局所GPUノードの完全精度勾配を低精度に圧縮し、GPUノード間の勾配同期効率を向上する。
しかし、圧縮情報損失により、トレーニング品質が劣化することが多い。
そこで本稿では,圧縮前のローカルGPUノードの勾配を補償するLoCo(Lo-bit Communication Adaptor)を提案する。
特に、LoCoは、同時圧縮エラーを安定して推定するために、歴史的な補償誤差の移動平均を設計し、それを並列勾配圧縮を補償するために採用し、損失の少ない圧縮をもたらす。
このメカニズムにより、Adamのような一般的なオプティマイザやFSDPのようなシャーディング戦略と互換性がある。
理論的解析によると、AdamやSGDのような完全精度最適化器にLoCoを組み込むことは、非凸問題に対する収束速度を損なうことはない。
実験結果から,Megatron-LMやPyTorchのFSDPといった大規模モデルトレーニングフレームワークにおいて,LoCoは通信効率を大幅に向上し,LLAMAやMoEのような大規模言語モデルの性能劣化を伴わずに,Adamのトレーニング速度を14%から40%向上させることができた。
関連論文リスト
- Accelerating Large Language Model Training with Hybrid GPU-based Compression [3.204387803072905]
MPIライブラリはメッセージサイズを大幅に削減し、相互接続帯域幅を活用することが証明されている。
分散大言語モデル(LLM)学習における圧縮支援型MPI集団の有効性について検討した。
論文 参考訳(メタデータ) (2024-09-04T04:05:30Z) - Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression [10.233937665979694]
DLRMは最先端のレコメンデーションシステムモデルであり、様々な業界アプリケーションで広く採用されている。
このプロセスの重大なボトルネックは、すべてのデバイスから埋め込みデータを集めるのに必要な全通信に時間を要することだ。
本稿では,通信データサイズを削減し,DLRMトレーニングを高速化するために,エラーバウンドの損失圧縮を利用する手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T05:55:18Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
分散データ並列(DDP)トレーニングは、複数のデバイスがデータのサブセットをトレーニングし、アップデートを集約してグローバルに共有するモデルを生成することにより、アプリケーション全体のスループットを向上させる。
GraVACは、モデル進捗を評価し、圧縮に関連する情報損失を評価することで、トレーニング全体を通して圧縮係数を動的に調整するフレームワークである。
静的圧縮係数を使用するのとは対照的に、GraVACはResNet101、VGG16、LSTMのエンドツーエンドのトレーニング時間をそれぞれ4.32x、1.95x、6.67x削減する。
論文 参考訳(メタデータ) (2023-05-20T14:25:17Z) - Communication-Compressed Adaptive Gradient Method for Distributed
Nonconvex Optimization [21.81192774458227]
主なボトルネックの1つは、中央サーバとローカルワーカーの間の通信コストが大きいことである。
提案する分散学習フレームワークは,効果的な勾配勾配圧縮戦略を特徴とする。
論文 参考訳(メタデータ) (2021-11-01T04:54:55Z) - Quantization for Distributed Optimization [0.0]
本稿では,バニラSGDの性能を維持しながら通信オーバヘッドを大幅に低減する全リデュース勾配対応圧縮方式を提案する。
我々の圧縮手法は、現在ディープラーニングフレームワークによって提供されている工法よりも優れています。
論文 参考訳(メタデータ) (2021-09-26T05:16:12Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
最先端プラットフォーム上でのDeep Neural Networks(DNN)の大規模分散トレーニングは,通信の厳しい制約が期待できる。
本稿では,学習者間の勾配分布の類似性を活用した新しい圧縮手法を提案する。
実験により,scalecomのオーバーヘッドは小さく,勾配トラフィックを直接低減し,高い圧縮率(65~400倍)と優れたスケーラビリティ(64名までの学習者,8~12倍のバッチサイズ)を提供する。
論文 参考訳(メタデータ) (2021-04-21T02:22:10Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
同期勾配降下(SGD)は、ディープラーニングモデルの分散トレーニングに最もよく用いられる手法である。
このアルゴリズムでは、各ワーカーは他のワーカーと局所勾配を共有し、すべてのワーカーの平均勾配を使ってパラメータを更新する。
いくつかの圧縮スキームについて検討し、3つの重要なパラメータが性能に与える影響を同定する。
論文 参考訳(メタデータ) (2020-09-19T17:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。