Breadth-first graph traversal union-find decoder
- URL: http://arxiv.org/abs/2407.15988v1
- Date: Mon, 22 Jul 2024 18:54:45 GMT
- Title: Breadth-first graph traversal union-find decoder
- Authors: Matthias C. Löbl, Susan X. Chen, Stefano Paesani, Anders S. Sørensen,
- Abstract summary: We develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages.
We show how these methods can be adapted to decode non-topological quantum low-density-parity-check codes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fast decoding algorithms are decisive for real-time quantum error correction and for analyzing properties of error correction codes. Here, we develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages. Furthermore, we show how these methods can be adapted to decode non-topological quantum low-density-parity-check (qLDPC) codes. All the developed decoders can directly include both qubit erasures and Pauli errors in the decoding step, thus addressing the dominant noise mechanisms for photonic quantum computing. We investigate the strengths and weaknesses of the different decoder variants, benchmark their speed and threshold error rates on several codes, and provide the used source code.
Related papers
- Degenerate quantum erasure decoding [7.6119527195998025]
We show how to achieve near-capacity performance with explicit codes and efficient decoders.
We furthermore explore the potential of our decoders to handle other error models, such as mixed erasure and depolarizing errors.
arXiv Detail & Related papers (2024-11-20T18:02:05Z) - Generalizing the matching decoder for the Chamon code [1.8416014644193066]
We implement a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code.
We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarising noise.
arXiv Detail & Related papers (2024-11-05T19:00:12Z) - Collective Bit Flipping-Based Decoding of Quantum LDPC Codes [0.6554326244334866]
We improve both the error correction performance and decoding latency of variable degree-3 (dv-3) QLDPC codes under iterative decoding.
Our decoding scheme is based on applying a modified version of bit flipping (BF) decoding, namely two-bit bit flipping (TBF) decoding.
arXiv Detail & Related papers (2024-06-24T18:51:48Z) - Ambiguity Clustering: an accurate and efficient decoder for qLDPC codes [0.0]
We introduce Ambiguity Clustering (AC), an algorithm which seeks to divide measurement data into clusters which are decoded independently.
AC is between one and three orders of magnitude faster than BP-OSD with no reduction in logical fidelity.
Our CPU implementation of AC is already fast enough to decode the 144-qubit Gross code in real time for neutral atom and trapped ion systems.
arXiv Detail & Related papers (2024-06-20T17:39:31Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z) - Efficient decoding up to a constant fraction of the code length for
asymptotically good quantum codes [0.38073142980732994]
Previous decoders for quantum low-density parity-check codes could only handle adversarial errors of weight $O(sqrtn log n)$.
We show that our decoder can be adapted to the Lifted Product codes of Panteleev and Kalachev.
arXiv Detail & Related papers (2022-06-15T14:46:06Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.