Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control
- URL: http://arxiv.org/abs/2109.12562v4
- Date: Fri, 26 Jul 2024 10:11:46 GMT
- Title: Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control
- Authors: Gaoyang Pang, Kang Huang, Daniel E. Quevedo, Branka Vucetic, Yonghui Li, Wanchun Liu,
- Abstract summary: We consider a joint uplink and downlink scheduling problem of a fully distributed wireless control system (WNCS) with a limited number of frequency channels.
We develop a deep reinforcement learning (DRL) based framework for solving it.
To tackle the challenges of a large action space in DRL, we propose novel action space reduction and action embedding methods.
- Score: 37.10638636086814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a joint uplink and downlink scheduling problem of a fully distributed wireless networked control system (WNCS) with a limited number of frequency channels. Using elements of stochastic systems theory, we derive a sufficient stability condition of the WNCS, which is stated in terms of both the control and communication system parameters. Once the condition is satisfied, there exists a stationary and deterministic scheduling policy that can stabilize all plants of the WNCS. By analyzing and representing the per-step cost function of the WNCS in terms of a finite-length countable vector state, we formulate the optimal transmission scheduling problem into a Markov decision process and develop a deep reinforcement learning (DRL) based framework for solving it. To tackle the challenges of a large action space in DRL, we propose novel action space reduction and action embedding methods for the DRL framework that can be applied to various algorithms, including Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed Deep Deterministic Policy Gradient (TD3). Numerical results show that the proposed algorithm significantly outperforms benchmark policies.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Resource Optimization for Tail-Based Control in Wireless Networked Control Systems [31.144888314890597]
Achieving control stability is one of the key design challenges of scalable Wireless Networked Control Systems.
This paper explores the use of an alternative control concept defined as tail-based control, which extends the classical Linear Quadratic Regulator (LQR) cost function for multiple dynamic control systems over a shared wireless network.
arXiv Detail & Related papers (2024-06-20T13:27:44Z) - Deep Reinforcement Learning for Uplink Scheduling in NOMA-URLLC Networks [7.182684187774442]
This article addresses the problem of Ultra Reliable Low Communications (URLLC) in wireless networks, a framework with particularly stringent constraints imposed by many Internet of Things (IoT) applications from diverse sectors.
We propose a novel Deep Reinforcement Learning (DRL) scheduling algorithm, to solve the Non-Orthogonal Multiple Access (NOMA) uplink URLLC scheduling problem involving strict deadlines.
arXiv Detail & Related papers (2023-08-28T12:18:02Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Deep reinforcement learning under signal temporal logic constraints
using Lagrangian relaxation [0.0]
In general, a constraint may be imposed on the decision making.
We consider the optimal decision making problems with constraints to complete temporal high-level tasks.
We propose a two-phase constrained DRL algorithm using the Lagrangian relaxation method.
arXiv Detail & Related papers (2022-01-21T00:56:25Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.