Resource Optimization for Tail-Based Control in Wireless Networked Control Systems
- URL: http://arxiv.org/abs/2406.14301v1
- Date: Thu, 20 Jun 2024 13:27:44 GMT
- Title: Resource Optimization for Tail-Based Control in Wireless Networked Control Systems
- Authors: Rasika Vijithasena, Rafaela Scaciota, Mehdi Bennis, Sumudu Samarakoon,
- Abstract summary: Achieving control stability is one of the key design challenges of scalable Wireless Networked Control Systems.
This paper explores the use of an alternative control concept defined as tail-based control, which extends the classical Linear Quadratic Regulator (LQR) cost function for multiple dynamic control systems over a shared wireless network.
- Score: 31.144888314890597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving control stability is one of the key design challenges of scalable Wireless Networked Control Systems (WNCS) under limited communication and computing resources. This paper explores the use of an alternative control concept defined as tail-based control, which extends the classical Linear Quadratic Regulator (LQR) cost function for multiple dynamic control systems over a shared wireless network. We cast the control of multiple control systems as a network-wide optimization problem and decouple it in terms of sensor scheduling, plant state prediction, and control policies. Toward this, we propose a solution consisting of a scheduling algorithm based on Lyapunov optimization for sensing, a mechanism based on Gaussian Process Regression (GPR) for state prediction and uncertainty estimation, and a control policy based on Reinforcement Learning (RL) to ensure tail-based control stability. A set of discrete time-invariant mountain car control systems is used to evaluate the proposed solution and is compared against four variants that use state-of-the-art scheduling, prediction, and control methods. The experimental results indicate that the proposed method yields 22% reduction in overall cost in terms of communication and control resource utilization compared to state-of-the-art methods.
Related papers
- Deep Learning for Wireless Networked Systems: a joint
Estimation-Control-Scheduling Approach [47.29474858956844]
Wireless networked control system (WNCS) connecting sensors, controllers, and actuators via wireless communications is a key enabling technology for highly scalable and low-cost deployment of control systems in the Industry 4.0 era.
Despite the tight interaction of control and communications in WNCSs, most existing works adopt separative design approaches.
We propose a novel deep reinforcement learning (DRL)-based algorithm for controller and optimization utilizing both model-free and model-based data.
arXiv Detail & Related papers (2022-10-03T01:29:40Z) - Thompson Sampling Achieves $\tilde O(\sqrt{T})$ Regret in Linear
Quadratic Control [85.22735611954694]
We study the problem of adaptive control of stabilizable linear-quadratic regulators (LQRs) using Thompson Sampling (TS)
We propose an efficient TS algorithm for the adaptive control of LQRs, TSAC, that attains $tilde O(sqrtT)$ regret, even for multidimensional systems.
arXiv Detail & Related papers (2022-06-17T02:47:53Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Nonlinear Control Allocation: A Learning Based Approach [0.0]
Modern aircraft are designed with redundant control effectors to cater for fault tolerance and maneuverability requirements.
This leads to aircraft being over-actuated and requires control allocation schemes to distribute the control commands among control effectors.
Traditionally, optimization-based control allocation schemes are used; however, for nonlinear allocation problems, these methods require large computational resources.
In this work, an artificial neural network (ANN) based nonlinear control allocation scheme is proposed.
arXiv Detail & Related papers (2022-01-17T02:30:25Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control [37.10638636086814]
We consider a joint uplink and downlink scheduling problem of a fully distributed wireless control system (WNCS) with a limited number of frequency channels.
We develop a deep reinforcement learning (DRL) based framework for solving it.
To tackle the challenges of a large action space in DRL, we propose novel action space reduction and action embedding methods.
arXiv Detail & Related papers (2021-09-26T11:27:12Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Stable Online Control of Linear Time-Varying Systems [49.41696101740271]
COCO-LQ is an efficient online control algorithm that guarantees input-to-state stability for a large class of LTV systems.
We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
arXiv Detail & Related papers (2021-04-29T06:18:49Z) - Learning Event-triggered Control from Data through Joint Optimization [7.391641422048646]
We present a framework for model-free learning of event-triggered control strategies.
We propose a novel algorithm based on hierarchical reinforcement learning.
The resulting algorithm is shown to accomplish high-performance control in line with resource savings and scales seamlessly to nonlinear and high-dimensional systems.
arXiv Detail & Related papers (2020-08-11T14:15:38Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.