Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation
- URL: http://arxiv.org/abs/2106.00131v1
- Date: Mon, 31 May 2021 22:59:31 GMT
- Title: Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation
- Authors: Yaling Tao, Kentaro Takagi, Kouta Nakata
- Abstract summary: We propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation.
In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is one of the most fundamental tasks in machine learning.
Recently, deep clustering has become a major trend in clustering techniques.
Representation learning often plays an important role in the effectiveness of
deep clustering, and thus can be a principal cause of performance degradation.
In this paper, we propose a clustering-friendly representation learning method
using instance discrimination and feature decorrelation. Our
deep-learning-based representation learning method is motivated by the
properties of classical spectral clustering. Instance discrimination learns
similarities among data and feature decorrelation removes redundant correlation
among features. We utilize an instance discrimination method in which learning
individual instance classes leads to learning similarity among instances.
Through detailed experiments and examination, we show that the approach can be
adapted to learning a latent space for clustering. We design novel
softmax-formulated decorrelation constraints for learning. In evaluations of
image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy
of 81.5% and 95.4%, respectively. We also show that the softmax-formulated
constraints are compatible with various neural networks.
Related papers
- Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
arXiv Detail & Related papers (2023-03-13T01:56:53Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
arXiv Detail & Related papers (2021-09-26T22:18:15Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.