Exploring Non-Contrastive Representation Learning for Deep Clustering
- URL: http://arxiv.org/abs/2111.11821v1
- Date: Tue, 23 Nov 2021 12:21:53 GMT
- Title: Exploring Non-Contrastive Representation Learning for Deep Clustering
- Authors: Zhizhong Huang, Jie Chen, Junping Zhang, Hongming Shan
- Abstract summary: Non-contrastive representation learning for deep clustering, termed NCC, is based on BYOL, a representative method without negative examples.
NCC forms an embedding space where all clusters are well-separated and within-cluster examples are compact.
Experimental results on several clustering benchmark datasets including ImageNet-1K demonstrate that NCC outperforms the state-of-the-art methods by a significant margin.
- Score: 23.546602131801205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep clustering methods rely on contrastive learning for
representation learning, which requires negative examples to form an embedding
space where all instances are well-separated. However, the negative examples
inevitably give rise to the class collision issue, compromising the
representation learning for clustering. In this paper, we explore
non-contrastive representation learning for deep clustering, termed NCC, which
is based on BYOL, a representative method without negative examples. First, we
propose to align one augmented view of instance with the neighbors of another
view in the embedding space, called positive sampling strategy, which avoids
the class collision issue caused by the negative examples and hence improves
the within-cluster compactness. Second, we propose to encourage alignment
between two augmented views of one prototype and uniformity among all
prototypes, named prototypical contrastive loss or ProtoCL, which can maximize
the inter-cluster distance. Moreover, we formulate NCC in an
Expectation-Maximization (EM) framework, in which E-step utilizes spherical
k-means to estimate the pseudo-labels of instances and distribution of
prototypes from a target network and M-step leverages the proposed losses to
optimize an online network. As a result, NCC forms an embedding space where all
clusters are well-separated and within-cluster examples are compact.
Experimental results on several clustering benchmark datasets including
ImageNet-1K demonstrate that NCC outperforms the state-of-the-art methods by a
significant margin.
Related papers
- Deep Contrastive Multi-view Clustering under Semantic Feature Guidance [8.055452424643562]
We propose a multi-view clustering framework named Deep Contrastive Multi-view Clustering under Semantic feature guidance (DCMCS)
By minimizing instance-level contrastive loss weighted by semantic similarity, DCMCS adaptively weakens contrastive leaning between false negative pairs.
Experimental results on several public datasets demonstrate the proposed framework outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-03-09T02:33:38Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Enhancing Clustering Representations with Positive Proximity and Cluster
Dispersion Learning [9.396177578282176]
We propose a novel end-to-end deep clustering approach named PIPCDR.
PIPCDR incorporates a positive instance proximity loss and a cluster dispersion regularizer.
We extensively validate the effectiveness of PIPCDR within an end-to-end Majorize-Minimization framework.
arXiv Detail & Related papers (2023-11-01T06:12:02Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Cluster-guided Contrastive Graph Clustering Network [53.16233290797777]
We propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC)
We construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks.
To construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples.
arXiv Detail & Related papers (2023-01-03T13:42:38Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
arXiv Detail & Related papers (2021-09-26T22:18:15Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.