Anomalous Edge Detection in Edge Exchangeable Social Network Models
- URL: http://arxiv.org/abs/2109.12727v2
- Date: Mon, 21 Aug 2023 04:28:43 GMT
- Title: Anomalous Edge Detection in Edge Exchangeable Social Network Models
- Authors: Rui Luo, Buddhika Nettasinghe, Vikram Krishnamurthy
- Abstract summary: We exploit edge exchangeability as a criterion for distinguishing anomalous edges from normal edges.
We present an anomaly detector based on conformal prediction theory.
- Score: 15.986251712074843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies detecting anomalous edges in directed graphs that model
social networks. We exploit edge exchangeability as a criterion for
distinguishing anomalous edges from normal edges. Then we present an anomaly
detector based on conformal prediction theory; this detector has a guaranteed
upper bound for false positive rate. In numerical experiments, we show that the
proposed algorithm achieves superior performance to baseline methods.
Related papers
- Unsupervised Surrogate Anomaly Detection [4.943054375935879]
We study unsupervised anomaly detection algorithms that learn a neural network representation, i.e. regular patterns of normal data, which anomalies are deviating from.
Inspired by a similar concept in engineering, we refer to our methodology as surrogate anomaly detection.
We formalize the concept of surrogate anomaly detection into a set of axioms required for optimal surrogate models and propose a new algorithm, named DEAN (Deep Ensemble ANomaly detection), designed to fulfill these criteria.
arXiv Detail & Related papers (2025-04-29T13:15:55Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
Edge detection is typically viewed as a pixel-level classification problem mainly addressed by discriminative methods.
We propose a novel approach, named Generative Edge Detector (GED), by fully utilizing the potential of the pre-trained stable diffusion model.
We conduct extensive experiments on multiple datasets and achieve competitive performance.
arXiv Detail & Related papers (2024-10-04T01:52:23Z) - A Mallows-like Criterion for Anomaly Detection with Random Forest Implementation [7.569443648362081]
This paper proposes a novel criterion to select the weights on aggregation of multiple models, wherein the focal loss function accounts for the classification of extremely imbalanced data.
We have evaluated the proposed method on benchmark datasets across various domains, including network intrusion.
arXiv Detail & Related papers (2024-05-29T09:36:57Z) - Revisiting Non-separable Binary Classification and its Applications in Anomaly Detection [10.031370250511207]
We show that linear classification of XOR is possible.
We propose equality separation, that adapts the SVM objective to distinguish data within or outside the margin.
Our classifier can then be integrated into neural network pipelines with a smooth approximation.
arXiv Detail & Related papers (2023-12-03T23:59:03Z) - Refined Edge Usage of Graph Neural Networks for Edge Prediction [51.06557652109059]
We propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE)
We first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision.
In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences.
arXiv Detail & Related papers (2022-12-25T23:19:56Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - A Contrario multi-scale anomaly detection method for industrial quality
inspection [0.2578242050187029]
We propose an a contrario framework to detect anomalies in images applying statistical analysis to feature maps obtained via convolutions.
The proposed method is multi-scale and fully unsupervised and is able to detect anomalies in a wide variety of scenarios.
While the end goal of this work is the detection of subtle defects in leather samples for the automotive industry, we show that the same algorithm achieves state-of-the-art results in public anomalies datasets.
arXiv Detail & Related papers (2022-05-03T17:08:36Z) - Out-of-Distribution Detection using Outlier Detection Methods [0.0]
Out-of-distribution detection (OOD) deals with anomalous input to neural networks.
We use outlier detection algorithms to detect anomalous input as reliable as specialized methods from the field of OOD.
No neural network adaptation is required; detection is based on the model's softmax score.
arXiv Detail & Related papers (2021-08-18T16:05:53Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.