Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection
- URL: http://arxiv.org/abs/2001.06591v2
- Date: Wed, 27 May 2020 20:35:24 GMT
- Title: Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection
- Authors: Ziyi Yang, Iman Soltani Bozchalooi and Eric Darve
- Abstract summary: We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
- Score: 5.457279006229213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate algorithms for anomaly detection. Previous
anomaly detection methods focus on modeling the distribution of non-anomalous
data provided during training. However, this does not necessarily ensure the
correct detection of anomalous data. We propose a new Regularized Cycle
Consistent Generative Adversarial Network (RCGAN) in which deep neural networks
are adversarially trained to better recognize anomalous samples. This approach
is based on leveraging a penalty distribution with a new definition of the loss
function and novel use of discriminator networks. It is based on a solid
mathematical foundation, and proofs show that our approach has stronger
guarantees for detecting anomalous examples compared to the current
state-of-the-art. Experimental results on both real-world and synthetic data
show that our model leads to significant and consistent improvements on
previous anomaly detection benchmarks. Notably, RCGAN improves on the
state-of-the-art on the KDDCUP, Arrhythmia, Thyroid, Musk and CIFAR10 datasets.
Related papers
- AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Anomaly Detection with Test Time Augmentation and Consistency Evaluation [13.709281244889691]
We propose a simple, yet effective anomaly detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD)
We observe that in-distribution data enjoy more consistent predictions for its original and augmented versions on a trained network than out-distribution data.
Experiments on various high-resolution image benchmark datasets demonstrate that TTA-AD achieves comparable or better detection performance.
arXiv Detail & Related papers (2022-06-06T04:27:06Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANs rely on the rich contextual information of these models to identify the actual training distribution.
We suggest a new unsupervised model based on GANs --a combination of an autoencoder and a GAN.
A new scoring function was introduced to target anomalies where a linear combination of the internal representation of the discriminator and the generator's visual representation, plus the encoded representation of the autoencoder, come together to define the proposed anomaly score.
arXiv Detail & Related papers (2021-12-31T16:35:47Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Old is Gold: Redefining the Adversarially Learned One-Class Classifier
Training Paradigm [15.898383112569237]
A popular method for anomaly detection is to use the generator of an adversarial network to formulate anomaly scores.
We propose a framework that effectively generates stable results across a wide range of training steps.
Our model achieves a frame-level AUC of 98.1%, surpassing recent state-of-the-art methods.
arXiv Detail & Related papers (2020-04-16T13:48:58Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.