論文の概要: Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2109.12764v1
- Date: Mon, 27 Sep 2021 02:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:45:10.967416
- Title: Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving
- Title(参考訳): 自動運転における車両軌道予測のためのグラフに基づく時空間畳み込みネットワーク
- Authors: Zihao Sheng, Yunwen Xu, Shibei Xue, and Dewei Li
- Abstract要約: 本稿では,グラフに基づく時空間畳み込みネットワーク(GSTCN)を提案する。
時空間の特徴を符号化し、ゲートリカレントユニット(GRU)ネットワークで復号し、将来の軌道分布を生成する。
次世代シミュレーション(NGSIM)におけるI-80とUS-101の2つの実世界の高速道路軌跡データを用いたネットワーク評価
- 参考スコア(独自算出の注目度): 2.6774008509841005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the trajectories of neighbor vehicles is a crucial step for
decision making and motion planning of autonomous vehicles. This paper proposes
a graph-based spatial-temporal convolutional network (GSTCN) to predict future
trajectory distributions of all neighbor vehicles using past trajectories. This
network tackles the spatial interactions using a graph convolutional network
(GCN), and captures the temporal features with a convolutional neural network
(CNN). The spatial-temporal features are encoded and decoded by a gated
recurrent unit (GRU) network to generate future trajectory distributions.
Besides, we propose a weighted adjacency matrix to describe the intensities of
mutual influence between vehicles, and the ablation study demonstrates the
effectiveness of our proposed scheme. Our network is evaluated on two
real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation
Simulation (NGSIM).Comparisons in three aspects, including prediction errors,
model sizes, and inference speeds, show that our network can achieve
state-of-the-art performance.
- Abstract(参考訳): 隣接する車両の軌道を予測することは、自動運転車の意思決定と行動計画にとって重要なステップである。
本稿では,過去のトラジェクタを用いた周辺車両の軌道分布予測のためのグラフベース時空間畳み込みネットワーク(gstcn)を提案する。
このネットワークは、グラフ畳み込みネットワーク(GCN)を用いて空間的相互作用に取り組み、畳み込みニューラルネットワーク(CNN)を用いて時間的特徴をキャプチャする。
空間的-時間的特徴をゲートリカレントユニット(gru)ネットワークで符号化して将来の軌道分布を生成する。
また,車両間の相互影響の強さを記述するための重み付き隣接行列を提案し,提案手法の有効性を示す。
本ネットワークは次世代シミュレーション(ngsim)のi-80とus-101の2つの実世界の軌道データセットで評価されている。
予測誤差,モデルサイズ,推論速度などの3つの側面の比較により,我々のネットワークが最先端の性能を発揮することを示す。
関連論文リスト
- ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method [1.8531577178922987]
時空間共振ネットワーク(ST-RetNet)と呼ばれる革新的なモデルを提案する。
空間スケールでは,道路網の動的空間的特徴を抽出するために適応的隣接行列を用いて,位相グラフ構造を空間共役ネットワーク(S-RetNet)に統合する。
時間的スケールでは,交通流パターンの長期的依存性の把握に優れたテンポラル・リテータ・ネットワーク(T-RetNet)を提案する。
論文 参考訳(メタデータ) (2024-07-13T03:52:32Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
本稿では,隣接する行列をトレーニング可能なアテンションスコア行列とする時間自己アテンショングラフ畳み込みネットワーク(DT-SGN)モデルを提案する。
実世界の交通データセット上での最先端モデル駆動モデルとデータ駆動モデルよりも,本手法の方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - A Graph and Attentive Multi-Path Convolutional Network for Traffic
Prediction [16.28015945020806]
本稿では,将来的な交通状況を予測するために,グラフおよび注意深いマルチパス畳み込みネットワーク(GAMCN)モデルを提案する。
我々のモデルは交通条件に影響を与える空間的要因と時間的要因に焦点を当てている。
予測精度は,予測誤差が最大18.9%,予測効率が23.4%である。
論文 参考訳(メタデータ) (2022-05-30T16:24:43Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
格子ハイパーグラフ(格子ハイパーグラフ)は、回路のための新しいグラフ定式化である。
LHNNは、F1スコアのU-netやPix2Pixと比べて、35%以上の改善を常に達成している。
論文 参考訳(メタデータ) (2022-03-24T03:31:18Z) - Vehicle Trajectory Prediction in City-scale Road Networks using a
Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention
Mechanisms [1.027974860479791]
都市規模での車両のトレイ予測は、車両ナビゲーション、交通管理、位置ベースの推奨など、様々な位置情報ベースのアプリケーションにとって非常に重要である。
既存の方法は通常、軌跡をグリッドセル、道路セグメントまたは意図のシーケンスとして表現する。
D-LSTMと呼ばれる新しいシーケンス・ツー・シーケンスモデルを提案する。このモデルでは,各トラジェクトリを交点と関連する移動方向のシーケンスとして表現し,将来の世代のためにLSTMエンコーダ・デコーダネットワークに入力する。
論文 参考訳(メタデータ) (2021-06-21T15:14:28Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。