論文の概要: Vehicle Trajectory Prediction in City-scale Road Networks using a
Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention
Mechanisms
- arxiv url: http://arxiv.org/abs/2106.11175v1
- Date: Mon, 21 Jun 2021 15:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:53:32.722182
- Title: Vehicle Trajectory Prediction in City-scale Road Networks using a
Direction-based Sequence-to-Sequence Model with Spatiotemporal Attention
Mechanisms
- Title(参考訳): 時空間的注意機構を持つ方向ベースシーケンス・ツー・シーケンスモデルを用いた都市規模道路網の車両軌道予測
- Authors: Yuebing Liang, Zhan Zhao
- Abstract要約: 都市規模での車両のトレイ予測は、車両ナビゲーション、交通管理、位置ベースの推奨など、様々な位置情報ベースのアプリケーションにとって非常に重要である。
既存の方法は通常、軌跡をグリッドセル、道路セグメントまたは意図のシーケンスとして表現する。
D-LSTMと呼ばれる新しいシーケンス・ツー・シーケンスモデルを提案する。このモデルでは,各トラジェクトリを交点と関連する移動方向のシーケンスとして表現し,将来の世代のためにLSTMエンコーダ・デコーダネットワークに入力する。
- 参考スコア(独自算出の注目度): 1.027974860479791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction of vehicles at the city scale is of great importance to
various location-based applications such as vehicle navigation, traffic
management, and location-based recommendations. Existing methods typically
represent a trajectory as a sequence of grid cells, road segments or intention
sets. None of them is ideal, as the cell-based representation ignores the road
network structures and the other two are less efficient in analyzing city-scale
road networks. In addition, most models focus on predicting the immediate next
position, and are difficult to generalize for longer sequences. To address
these problems, we propose a novel sequence-to-sequence model named D-LSTM
(Direction-based Long Short-Term Memory), which represents each trajectory as a
sequence of intersections and associated movement directions, and then feeds
them into a LSTM encoder-decoder network for future trajectory generation.
Furthermore, we introduce a spatial attention mechanism to capture dynamic
spatial dependencies in road networks, and a temporal attention mechanism with
a sliding context window to capture both short- and long-term temporal
dependencies in trajectory data. Extensive experiments based on two real-world
large-scale taxi trajectory datasets show that D-LSTM outperforms the existing
state-of-the-art methods for vehicle trajectory prediction, validating the
effectiveness of the proposed trajectory representation method and
spatiotemporal attention mechanisms.
- Abstract(参考訳): 都市規模での車両の軌道予測は、車両ナビゲーション、交通管理、位置ベースの推奨など、様々な位置情報ベースのアプリケーションにとって非常に重要である。
既存の方法は通常、軌跡をグリッドセル、道路セグメントまたは意図セットのシーケンスとして表現する。
セルベースの表現は道路網構造を無視し、他の2つは都市規模の道路網の分析において効率が低いため、いずれも理想的ではない。
さらに、ほとんどのモデルはすぐに次の位置を予測することに集中しており、長いシーケンスで一般化することは困難である。
これらの問題を解決するために,D-LSTM (Direction-based Long Short-Term Memory) と呼ばれる新しいシーケンス・ツー・シーケンスモデルを提案する。
さらに,道路ネットワークにおける動的空間依存性を捕捉する空間的注意機構と,軌道データにおける短期的および長期的時間依存性を捕捉するスライディングコンテキストウィンドウを備えた時間的注意機構を導入する。
2つの実世界の大規模タクシー軌道データセットに基づく大規模な実験により、D-LSTMは既存の車両軌道予測手法よりも優れており、提案手法の有効性と時空間注意機構の有効性が検証された。
関連論文リスト
- Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
本稿では,トランスフォーマーモデルにおけるアテンション表現に対して,クロスドメイン適応を行う新しい時空間軌道予測フレームワークを提案する。
グラフ畳み込みネットワークは、マルチエージェント車両間の複雑な時空間相互作用を正確にモデル化する動的グラフ特徴埋め込みを構築するためにも統合される。
論文 参考訳(メタデータ) (2024-11-09T06:39:44Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
本稿では,隣接する行列をトレーニング可能なアテンションスコア行列とする時間自己アテンショングラフ畳み込みネットワーク(DT-SGN)モデルを提案する。
実世界の交通データセット上での最先端モデル駆動モデルとデータ駆動モデルよりも,本手法の方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
本稿では,空間的動的相互作用グラフ(SDG)と行動依存グラフ(BDG)を用いて,交通信号に対する軌道予測手法D2-TPredを提案する。
実験の結果,VTP-TLではADEとFDEでそれぞれ20.45%,20.78%以上を達成できた。
論文 参考訳(メタデータ) (2022-07-21T10:19:07Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
短期的な交通流予測は知的交通システム(ITS)の重要な分岐であり、交通管理において重要な役割を果たしている。
グラフ畳み込みネットワーク(GCN)は道路網のグラフィカルな構造データを扱うために交通予測モデルで広く利用されている。
この欠点に対処するために、新しい位置グラフ畳み込みネットワーク(Location-GCN)を提案する。
論文 参考訳(メタデータ) (2022-05-10T09:19:12Z) - Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving [2.6774008509841005]
本稿では,グラフに基づく時空間畳み込みネットワーク(GSTCN)を提案する。
時空間の特徴を符号化し、ゲートリカレントユニット(GRU)ネットワークで復号し、将来の軌道分布を生成する。
次世代シミュレーション(NGSIM)におけるI-80とUS-101の2つの実世界の高速道路軌跡データを用いたネットワーク評価
論文 参考訳(メタデータ) (2021-09-27T02:20:38Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。