論文の概要: Machine Learning based Medical Image Deepfake Detection: A Comparative
Study
- arxiv url: http://arxiv.org/abs/2109.12800v1
- Date: Mon, 27 Sep 2021 05:10:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:48:02.948868
- Title: Machine Learning based Medical Image Deepfake Detection: A Comparative
Study
- Title(参考訳): 機械学習による医用画像のディープフェイク検出--比較研究
- Authors: Siddharth Solaiyappan, Yuxin Wen
- Abstract要約: 我々は,異なる機械学習アルゴリズムと事前訓練された畳み込みニューラルネットワークを,改ざんされたデータと未改ざんデータの区別で評価する。
本研究は, 腫瘍注入および摘出例の検出において, ほぼ完全な精度を示した。
- 参考スコア(独自算出の注目度): 6.3455238301221675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative networks in recent years have reinforced the need for caution
while consuming various modalities of digital information. One avenue of
deepfake creation is aligned with injection and removal of tumors from medical
scans. Failure to detect medical deepfakes can lead to large setbacks on
hospital resources or even loss of life. This paper attempts to address the
detection of such attacks with a structured case study. We evaluate different
machine learning algorithms and pretrained convolutional neural networks on
distinguishing between tampered and untampered data. The findings of this work
show near perfect accuracy in detecting instances of tumor injections and
removals.
- Abstract(参考訳): 近年のディープジェネレーティブネットワークは、デジタル情報の様々なモダリティを消費しながら、注意の必要性を高めている。
ディープフェイクの創造の1つの道は、医療用スキャンから腫瘍の注入と除去と一致している。
医療用ディープフェイクの発見に失敗すると、病院のリソースが大幅に低下したり、命を失うことさえある。
本稿では,このような攻撃の検知に,構造化ケーススタディを用いて取り組む。
我々は,異なる機械学習アルゴリズムと事前訓練された畳み込みニューラルネットワークを,改ざんされたデータと未改ざんデータの区別で評価する。
本研究は,腫瘍注入および摘出例の検出において,ほぼ完全な精度を示した。
関連論文リスト
- Back-in-Time Diffusion: Unsupervised Detection of Medical Deepfakes [3.2720947374803777]
拡散モデルに基づく医用画像のための新しい異常検出法を提案する。
モデルに疑似画像上の拡散を逆転させることにより、類似したプロセスを用いて合成内容を検出する方法を示す。
本手法は非監視検出器の他の状態よりも有意に優れており,AUCは0.79から0.9、除去用0.91から0.96から0.9に増加した。
論文 参考訳(メタデータ) (2024-07-21T13:58:43Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Are Deep Learning Classification Results Obtained on CT Scans Fair and
Interpretable? [0.0]
ほとんどの肺結節分類論文は、ディープラーニングを用いてランダムにシャッフルし、それをトレーニング、検証、テストセットに分割する。
対照的に、厳密な患者レベルの分離で訓練されたディープニューラルネットワークは、新しい患者画像が検査された場合でも、正確性を維持する。
厳密な患者レベルの分離で訓練されたディープニューラルネットワークの活性化のヒートマップの可視化は、関連する結節に対する集中度が高いことを示している。
論文 参考訳(メタデータ) (2023-09-22T05:57:25Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
本研究では,金属インプラントとの接触部における骨成長の計算アルゴリズムを開発した。
骨とインプラント組織はトレーニングデータセットに手動でセグメンテーションされた。
ネットワーク精度の面では、モデルは約98%に達した。
論文 参考訳(メタデータ) (2022-04-22T08:17:20Z) - Metamorphic Testing-based Adversarial Attack to Fool Deepfake Detectors [2.0649235321315285]
ディープフェイク検出技術はディープフェイクメディアを見つけるのに役立つ。
現在のディープフェイク検出モデルは、卓越した精度(>90%)を達成することができる
本研究は、メイクアップを、ディープフェイク検出器を騙す可能性のある敵攻撃として特定する。
論文 参考訳(メタデータ) (2022-04-19T02:24:30Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - DKMA-ULD: Domain Knowledge augmented Multi-head Attention based Robust
Universal Lesion Detection [19.165942326142538]
本稿では,1つのデータセットであるDeepLesionをトレーニングすることにより,全身の臓器にまたがる病変を検出できる,堅牢な普遍的病変検出(ULD)ネットワークを提案する。
我々は,新しい畳み込み型マルチヘッド自己保持モジュールを用いて,様々な強度のCTスライスを解析した。
約32KのCTスキャンと全臓器に注視病変を付加したDeepLesionデータセットを用いて,本ネットワークの有効性を検証した。
論文 参考訳(メタデータ) (2022-03-14T06:54:28Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
高分解能スライドスキャンにおけるマルチスケール腫瘍(キメラ細胞)検出アルゴリズムを提案する。
提案手法では,CNNの異なる層における有効受容場を改良し,幅広いスケールの物体を1つの前方通過で検出する。
論文 参考訳(メタデータ) (2020-10-01T18:56:46Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。