Mixed Integer Neural Inverse Design
- URL: http://arxiv.org/abs/2109.12888v1
- Date: Mon, 27 Sep 2021 09:19:41 GMT
- Title: Mixed Integer Neural Inverse Design
- Authors: Navid Ansari, Hans-Peter Seidel, Vahid Babaei
- Abstract summary: piecewise linear property, very common in everyday neural networks, allows for an inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal solutions in a principled manner.
- Score: 27.43272793942742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In computational design and fabrication, neural networks are becoming
important surrogates for bulky forward simulations. A long-standing,
intertwined question is that of inverse design: how to compute a design that
satisfies a desired target performance? Here, we show that the piecewise linear
property, very common in everyday neural networks, allows for an inverse design
formulation based on mixed-integer linear programming. Our mixed-integer
inverse design uncovers globally optimal or near optimal solutions in a
principled manner. Furthermore, our method significantly facilitates emerging,
but challenging, combinatorial inverse design tasks, such as material
selection. For problems where finding the optimal solution is not desirable or
tractable, we develop an efficient yet near-optimal hybrid optimization.
Eventually, our method is able to find solutions provably robust to possible
fabrication perturbations among multiple designs with similar performances.
Related papers
- Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Tackling Multimodal Device Distributions in Inverse Photonic Design
using Invertible Neural Networks [0.0]
Inverse design is the process of matching a device or process parameters to exhibit a desired performance.
Most traditional optimization routines assume an invertible one-to-one mapping between the design parameters and the target performance.
We show how a generative modeling approach based on invertible neural networks can provide the full distribution of possible solutions to the inverse design problem.
arXiv Detail & Related papers (2022-08-29T08:46:17Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
This article proposes an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II.
The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator.
arXiv Detail & Related papers (2022-06-03T17:13:29Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - An adaptive artificial neural network-based generative design method for
layout designs [17.377351418260577]
An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
arXiv Detail & Related papers (2021-01-29T05:32:17Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
convex mixed-integer programming formulation for non-rigid shape matching.
We propose a novel shape deformation model based on an efficient low-dimensional discrete model.
arXiv Detail & Related papers (2020-02-28T09:54:06Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.