AutoTandemML: Active Learning Enhanced Tandem Neural Networks for Inverse Design Problems
- URL: http://arxiv.org/abs/2502.15643v1
- Date: Fri, 21 Feb 2025 18:10:56 GMT
- Title: AutoTandemML: Active Learning Enhanced Tandem Neural Networks for Inverse Design Problems
- Authors: Luka Grbcic, Juliane Müller, Wibe Albert de Jong,
- Abstract summary: Inverse design involves determining optimal design parameters that achieve desired performance outcomes.<n>We propose a novel hybrid approach that combines active learning with Tandem Neural Networks to enhance the efficiency and effectiveness of solving inverse design problems.
- Score: 0.8646443773218541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse design in science and engineering involves determining optimal design parameters that achieve desired performance outcomes, a process often hindered by the complexity and high dimensionality of design spaces, leading to significant computational costs. To tackle this challenge, we propose a novel hybrid approach that combines active learning with Tandem Neural Networks to enhance the efficiency and effectiveness of solving inverse design problems. Active learning allows to selectively sample the most informative data points, reducing the required dataset size without compromising accuracy. We investigate this approach using three benchmark problems: airfoil inverse design, photonic surface inverse design, and scalar boundary condition reconstruction in diffusion partial differential equations. We demonstrate that integrating active learning with Tandem Neural Networks outperforms standard approaches across the benchmark suite, achieving better accuracy with fewer training samples.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Mixed Integer Neural Inverse Design [27.43272793942742]
piecewise linear property, very common in everyday neural networks, allows for an inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal solutions in a principled manner.
arXiv Detail & Related papers (2021-09-27T09:19:41Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - An adaptive artificial neural network-based generative design method for
layout designs [17.377351418260577]
An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
arXiv Detail & Related papers (2021-01-29T05:32:17Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.