Attention Gate in Traffic Forecasting
- URL: http://arxiv.org/abs/2109.13021v1
- Date: Mon, 27 Sep 2021 12:58:12 GMT
- Title: Attention Gate in Traffic Forecasting
- Authors: Anh Lam, Anh Nguyen, and Bac Le
- Abstract summary: Traffic Map Movie Forecasting Challenge 2020 is secondly held in the competition track of the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS)
The task is to predict traffic flow volume, average speed in major directions on the geographical area of three big cities: Berlin, Istanbul, and Moscow.
In this paper, we apply the attention mechanism on U-Net based model, especially we add an attention gate on the skip-connection between contraction path and expansion path.
- Score: 16.153263073898746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of increased urban complexity and growing populations, more and more
challenges about predicting city-wide mobility behavior are being organized.
Traffic Map Movie Forecasting Challenge 2020 is secondly held in the
competition track of the Thirty-fourth Conference on Neural Information
Processing Systems (NeurIPS). Similar to Traffic4Cast 2019, the task is to
predict traffic flow volume, average speed in major directions on the
geographical area of three big cities: Berlin, Istanbul, and Moscow. In this
paper, we apply the attention mechanism on U-Net based model, especially we add
an attention gate on the skip-connection between contraction path and expansion
path. An attention gates filter features from the contraction path before
combining with features on the expansion path, it enables our model to reduce
the effect of non-traffic region features and focus more on crucial region
features. In addition to the competition data, we also propose two extra
features which often affect traffic flow, that are time and weekdays. We
experiment with our model on the competition dataset and reproduce the winner
solution in the same environment. Overall, our model archives better
performance than recent methods.
Related papers
- ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENT consists of three parts, namely the Spatio-Temporal Causality Learning (STCL), Causal Graph Generation (CGG), and Speed Fluctuation Pattern Recognition (SFPR) modules.
ICST-DENT can outperform all existing baselines, as evidenced by the higher prediction accuracy, ability to explain causality, and adaptability to different scenarios.
arXiv Detail & Related papers (2024-04-22T03:35:19Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Urban Regional Function Guided Traffic Flow Prediction [117.75679676806296]
We propose a novel module named POI-MetaBlock, which utilizes the functionality of each region as metadata.
Our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.
arXiv Detail & Related papers (2023-03-17T06:03:49Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Multi-task Learning for Sparse Traffic Forecasting [13.359590890052454]
We propose a multi-task learning network that can simultaneously predict the congestion classes and the speed of each road segment.
Our method achieved excellent results on the dataset provided by the Traffic4cast Competition 2022, source code is available at https://github.com/OctopusLi/NeurIPS2022-traffic4cast.
arXiv Detail & Related papers (2022-11-18T02:10:40Z) - Large scale traffic forecasting with gradient boosting, Traffic4cast
2022 challenge [0.0]
We present our solution to the IARAI Traffic4cast 2022 competition.
The goal is to develop algorithms for predicting road graph edge congestion classes and supersegment-level travel times.
This simple, fast, and scalable technique allowed us to win second place in the core competition.
arXiv Detail & Related papers (2022-10-31T21:52:19Z) - Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer
Learning in Gridded Geo-Spatial Processes [61.16854022482186]
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future.
U-Nets proved to be the winning architecture, demonstrating an ability to extract relevant features in this complex real-world geo-spatial process.
The competition now covers ten cities over 2 years, providing data compiled from over 1012 GPS probe data.
arXiv Detail & Related papers (2022-03-31T14:40:01Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
We propose a periodic deeptemporal neural network (PSTN) with three modules to improve the forecasting performance of traffic conditions.
First, the historical traffic information is folded and fed into a module consisting of a graph convolutional network and a temporal convolutional network.
arXiv Detail & Related papers (2021-08-05T07:42:43Z) - TLab: Traffic Map Movie Forecasting Based on HR-NET [23.40323690536007]
In our solution, hand-crafted features are input into the model in a form of channels.
In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.
arXiv Detail & Related papers (2020-11-13T18:48:13Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.