TLab: Traffic Map Movie Forecasting Based on HR-NET
- URL: http://arxiv.org/abs/2011.07728v2
- Date: Tue, 17 Nov 2020 01:55:33 GMT
- Title: TLab: Traffic Map Movie Forecasting Based on HR-NET
- Authors: Fanyou Wu, Yang Liu, Zhiyuan Liu, Xiaobo Qu, Rado Gazo, Eva Haviarova
- Abstract summary: In our solution, hand-crafted features are input into the model in a form of channels.
In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.
- Score: 23.40323690536007
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The problem of the effective prediction for large-scale spatio-temporal
traffic data has long haunted researchers in the field of intelligent
transportation. Limited by the quantity of data, citywide traffic state
prediction was seldom achieved. Hence the complex urban transportation system
of an entire city cannot be truly understood. Thanks to the efforts of
organizations like IARAI, the massive open data provided by them has made the
research possible. In our 2020 Competition solution, we further design multiple
variants based on HR-NET and UNet. Through feature engineering, the
hand-crafted features are input into the model in a form of channels. It is
worth noting that, to learn the inherent attributes of geographical locations,
we proposed a novel method called geo-embedding, which contributes to
significant improvement in the accuracy of the model. In addition, we explored
the influence of the selection of activation functions and optimizers, as well
as tricks during model training on the model performance. In terms of
prediction accuracy, our solution has won 2nd place in NeurIPS 2020,
Traffic4cast Challenge.
Related papers
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
We focus on predicting path loss radio maps using convolutional neural networks.
We show that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task.
We introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity.
arXiv Detail & Related papers (2024-10-07T09:19:20Z) - OpenCity: Open Spatio-Temporal Foundation Models for Traffic Prediction [29.514461050436932]
We introduce a novel foundation model, named OpenCity, that can effectively capture and normalize the underlying unseen-temporal patterns from diverse data characteristics.
OpenCity integrates the Transformer architecture with graph neural networks to model the complex-temporal dependencies in traffic data.
Experimental results demonstrate that OpenCity exhibits exceptional zero-shot performance.
arXiv Detail & Related papers (2024-08-16T15:20:36Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
Current research on Spatio-Temporal Graph Neural Networks (STGNNs) often prioritizes complex designs, leading to computational burdens with only minor enhancements in accuracy.
We propose ST-MLP, a concise cascaded temporal-temporal model solely based on Multi-Layer Perceptron (MLP) modules and linear layers.
Empirical results demonstrate that ST-MLP outperforms state-of-the-art STGNNs and other models in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2023-08-14T23:34:59Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Large scale traffic forecasting with gradient boosting, Traffic4cast
2022 challenge [0.0]
We present our solution to the IARAI Traffic4cast 2022 competition.
The goal is to develop algorithms for predicting road graph edge congestion classes and supersegment-level travel times.
This simple, fast, and scalable technique allowed us to win second place in the core competition.
arXiv Detail & Related papers (2022-10-31T21:52:19Z) - Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer
Learning in Gridded Geo-Spatial Processes [61.16854022482186]
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future.
U-Nets proved to be the winning architecture, demonstrating an ability to extract relevant features in this complex real-world geo-spatial process.
The competition now covers ten cities over 2 years, providing data compiled from over 1012 GPS probe data.
arXiv Detail & Related papers (2022-03-31T14:40:01Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Domain Adversarial Spatial-Temporal Network: A Transferable Framework
for Short-term Traffic Forecasting across Cities [9.891703123090528]
We propose a novel transferable traffic forecasting framework: Adversarial Spatial-Temporal Network (DASTNet)
DASTNet is pre-trained on multiple source networks and fine-tuned with the target network's traffic data.
It consistently outperforms all state-of-the-art baseline methods on three benchmark datasets.
arXiv Detail & Related papers (2022-02-08T03:58:39Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
arXiv Detail & Related papers (2020-02-14T16:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.