論文の概要: Trajectory-based Reinforcement Learning of Non-prehensile Manipulation
Skills for Semi-Autonomous Teleoperation
- arxiv url: http://arxiv.org/abs/2109.13081v1
- Date: Mon, 27 Sep 2021 14:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:20:46.727478
- Title: Trajectory-based Reinforcement Learning of Non-prehensile Manipulation
Skills for Semi-Autonomous Teleoperation
- Title(参考訳): 半自律遠隔操作のための非理解操作スキルの軌道ベース強化学習
- Authors: Sangbeom Park, Yoonbyung Chai, Sunghyun Park, Jeongeun Park, Kyungjae
Lee, Sungjoon Choi
- Abstract要約: 本稿では,RGB-Dセンサを用いたピックアップ・アンド・プレイスタスクのための半自律遠隔操作フレームワークを提案する。
トラジェクトリに基づく強化学習を用いて、非包括的操作を学習し、物体を再構成する。
提案手法は,握り時間の観点から手動キーボード制御よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 18.782289957834475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a semi-autonomous teleoperation framework for a
pick-and-place task using an RGB-D sensor. In particular, we assume that the
target object is located in a cluttered environment where both prehensile
grasping and non-prehensile manipulation are combined for efficient
teleoperation. A trajectory-based reinforcement learning is utilized for
learning the non-prehensile manipulation to rearrange the objects for enabling
direct grasping. From the depth image of the cluttered environment and the
location of the goal object, the learned policy can provide multiple options of
non-prehensile manipulation to the human operator. We carefully design a reward
function for the rearranging task where the policy is trained in a simulational
environment. Then, the trained policy is transferred to a real-world and
evaluated in a number of real-world experiments with the varying number of
objects where we show that the proposed method outperforms manual keyboard
control in terms of the time duration for the grasping.
- Abstract(参考訳): 本稿では,RGB-Dセンサを用いたピックアップ・アンド・プレイスタスクのための半自律遠隔操作フレームワークを提案する。
特に、対象オブジェクトは、包括的把握と非包括的操作の両方を組み合わせて効率的な遠隔操作を行う、散在する環境にあると仮定する。
トラジェクトリに基づく強化学習を用いて、非包括的操作を学習し、物体を再構成して直接把握する。
粗い環境の深度画像と目標物体の位置から、学習したポリシーは人間の操作者に複数の非包括的操作の選択肢を提供することができる。
シミュレーション環境において,方針を訓練するタスクを整理するための報酬関数を慎重に設計する。
そして,訓練されたポリシーを実世界へ移行し,多数のオブジェクトを用いて実世界実験を行い,提案手法が把握時間において手動キーボード制御よりも優れていることを示す。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
ロボット作業におけるオブジェクト指向表現学習の有効性を示す。
本モデルは,サンプル効率のよい制御ポリシーを学習し,最先端のオブジェクト技術より優れている。
論文 参考訳(メタデータ) (2022-05-12T19:48:11Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Affordance Learning from Play for Sample-Efficient Policy Learning [30.701546777177555]
遠隔操作型プレイデータから自己監督型ビジュアルアプライアンスモデルを用いて,効率的なポリシー学習とモーションプランニングを実現する。
モデルベースプランニングとモデルフリーの深層強化学習を組み合わせることで、人々が好む同じ対象領域を好むポリシーを学ぶ。
我々の政策はベースラインよりも4倍速くトレーニングし、新しいオブジェクトを一般化する。
論文 参考訳(メタデータ) (2022-03-01T11:00:35Z) - Distilling Motion Planner Augmented Policies into Visual Control
Policies for Robot Manipulation [26.47544415550067]
我々は,国家ベースのモーションプランナ拡張ポリシーを視覚制御ポリシーに蒸留することを提案する。
閉塞環境における3つの操作課題について評価を行った。
我々のフレームワークはサンプリング効率が高く、最先端のアルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-11-11T18:52:00Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Follow the Object: Curriculum Learning for Manipulation Tasks with
Imagined Goals [8.98526174345299]
本稿では,想像対象目標の概念を紹介する。
特定の操作タスクに対して、興味のある対象は、まず自分自身で所望の目標位置に到達するように訓練される。
オブジェクトポリシーは、可塑性オブジェクト軌跡の予測モデルを構築するために利用されます。
提案するアルゴリズムであるFollow the Objectは、7つのMuJoCo環境で評価されている。
論文 参考訳(メタデータ) (2020-08-05T12:19:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。