論文の概要: Learning Extrinsic Dexterity with Parameterized Manipulation Primitives
- arxiv url: http://arxiv.org/abs/2310.17785v3
- Date: Thu, 9 May 2024 14:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 18:09:15.013181
- Title: Learning Extrinsic Dexterity with Parameterized Manipulation Primitives
- Title(参考訳): パラメータ化マニピュレーションプリミティブによる外部デキスタリティの学習
- Authors: Shih-Min Yang, Martin Magnusson, Johannes A. Stork, Todor Stoyanov,
- Abstract要約: 我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
- 参考スコア(独自算出の注目度): 8.7221770019454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many practically relevant robot grasping problems feature a target object for which all grasps are occluded, e.g., by the environment. Single-shot grasp planning invariably fails in such scenarios. Instead, it is necessary to first manipulate the object into a configuration that affords a grasp. We solve this problem by learning a sequence of actions that utilize the environment to change the object's pose. Concretely, we employ hierarchical reinforcement learning to combine a sequence of learned parameterized manipulation primitives. By learning the low-level manipulation policies, our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment. Designing such a complex behavior analytically would be infeasible under uncontrolled conditions, as an analytic approach requires accurate physical modeling of the interaction and contact dynamics. In contrast, we learn a hierarchical policy model that operates directly on depth perception data, without the need for object detection, pose estimation, or manual design of controllers. We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace. Our method transfers to a real robot and is able to successfully complete the object picking task in 98\% of experimental trials. Supplementary information and videos can be found at https://shihminyang.github.io/ED-PMP/.
- Abstract(参考訳): 現実的なロボットの把握問題の多くは、環境によって、すべてのグリップが隠蔽されているターゲットオブジェクトを特徴としている。
このようなシナリオでは、シングルショットの把握計画が必ず失敗する。
代わりに、まずオブジェクトを把握可能な構成に操作する必要があります。
我々は,物体の姿勢を変えるために環境を利用する一連の動作を学習することで,この問題を解決する。
具体的には、階層的強化学習を用いて、学習されたパラメータ化された操作プリミティブのシーケンスを組み合わせる。
低レベルの操作ポリシーを学習することにより、オブジェクト、グリップ、環境間の相互作用を利用してオブジェクトの状態を制御することができる。
このような複雑な振る舞いを解析的に設計することは、相互作用と接触ダイナミクスの正確な物理的モデリングを必要とするため、制御不能な条件下では不可能である。
対照的に、オブジェクト検出、ポーズ推定、コントローラの手動設計を必要とせずに、深度知覚データを直接操作する階層的なポリシーモデルを学ぶ。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
提案手法は実際のロボットに移動し,98 %の実験実験で対象物抽出作業の完了を達成できる。
追加情報とビデオはhttps://shihminyang.github.io/ED-PMP/で見ることができる。
関連論文リスト
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:59:56Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
本稿では,Articulated Objects (RPMArt) のロバスト知覚と操作のためのフレームワークを提案する。
RPMArtは、調音パラメータを推定し、雑音の多い点雲から調音部分を操作することを学習する。
我々は,シミュレート・トゥ・リアル・トランスファーの能力を高めるための調音認識型分類手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T05:55:39Z) - Learning active tactile perception through belief-space control [21.708391958446274]
本稿では,創造的世界モデルを開発することにより,触覚探索政策を自律的に学習する手法を提案する。
本手法は,目的が所望のオブジェクト特性を推定することである3つのシミュレーションタスクに対して評価する。
提案手法は, 所望のプロパティに関する情報を直感的に収集するポリシーを発見できることがわかった。
論文 参考訳(メタデータ) (2023-11-30T21:54:42Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation [35.34044822433743]
ロボット操作の最近の研究は、様々なタスクに取り組む可能性を示している。
これは関節制御のための高次元の作用空間によるものであると推測する。
本稿では,「何をすべきか」を「どうやるか」から「どうやるか」を学習するタスクを,別のアプローチで分離する。
ロボットキネマティック・コントロールは、作業空間のゴールに到達するために高次元の関節運動を実行するように最適化されている。
論文 参考訳(メタデータ) (2023-03-07T16:31:13Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
本稿では,様々な幾何学的に異なる実世界の物体の対話的把握を学習する強化学習フレームワークを提案する。
学習したインタラクティブなポリシーのビデオはhttps://maltemosbach.org/io/geometry_aware_grasping_policiesで公開されている。
論文 参考訳(メタデータ) (2022-11-20T11:47:33Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Generalizing Object-Centric Task-Axes Controllers using Keypoints [15.427056235112152]
オブジェクト指向タスクアクスコントローラを構成するモジュール型タスクポリシーを学習する。
これらのタスクアックスコントローラは、シーンの下位オブジェクトに関連付けられたプロパティによってパラメータ化される。
私たちの全体的なアプローチは、操作タスクを学ぶためのシンプルでモジュール化された強力なフレームワークを提供します。
論文 参考訳(メタデータ) (2021-03-18T21:08:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。